• Title/Summary/Keyword: secondary bonding

Search Result 118, Processing Time 0.022 seconds

Crystal Structure and Tautomerism Study of the Mono-protonated Metformin Salt

  • Wei, Xiaodan;Fan, Yuhua;Bi, Caifeng;Yan, Xingchen;Zhang, Xia;Li, Xin
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3495-3501
    • /
    • 2014
  • A novel crystal, the mono-protonated metformin acetate (1), was obtained and characterized by elemental analysis, IR spectroscopy and X-ray crystallography. It was found that one of the imino group in the metformin cation was protonated along with the proton transfer from the secondary amino group to the other imino group. Its crystal structure was then compared with the previously reported diprotonated metformin oxalate (2). The difference between them is that the mono-protonated metformin cations can be linked by hydrogen bonding to form dimers while the diprotonated metformin cations cannot. Both of them are stabilized by intermolecular hydrogen bonds to assemble a 3-D supermolecular structure. The four potential tautomer of the mono-protonated metformin cation (tautomers 1a, 1b, 1c and 1d) were optimized and their single point energies were calculated by Density Functional Theory (DFT) B3LYP method based on the Polarized Continuum Model (PCM) in water, which shows that the most likely existed tautomer in human cells is the same in the crystal structure. Based on the optimized structure, their Wiberg bond orders, Natural Population Analysis (NPA) atomic charges, molecular electrostatic potential (MEP) maps were calculated to analyze their electronic structures, which were then compared with the corresponding values of the diprotonated metformin cation (cation 2) and the neutral metformin (compound 3). Finally, the possible tautomeric mechanism of the mono-protonated metformin cation was discussed based on the observed phenomena.

$CHF_3/C_2F_6$ 반응성이온 건식식각에 의한 실리콘 표면의 변형에 관한 연구 (A study on a silicon surface modification by $CHF_3/C_2F_6$ reactive ion etching)

  • 박형호;권광호;곽병화;이수민;권오준;김보우;성영권
    • 한국재료학회지
    • /
    • 제1권4호
    • /
    • pp.214-220
    • /
    • 1991
  • 실리콘 산화막을 $CHF_{3/}C_2F_6$ 혼합가스를 사용하여 반응성이온 건식식각을 행할 때 실리콘 표면에 형성되는 잔류막과 손상층을 X-선 광전자 분광기(XPS)와 이차이온 질량 분석기(SIMS)를 사용, 연구하였다. 실리콘, 탄소, 산소 및 불소의 angle-resolved XPS분석기술을 이용한 비파괴적 화학결합상태의 깊이분포 분석을 통하여 잔류막의 표면부에 O-F 결합이 존재하며 잔류막은 주로 탄소와 불소의 결합체인 C-F 플리머로 구성되어져 있고 Si-O, Si-C 및 Si-F 결합 등이 존재함을 알았다. 손상층은 실리콘 표면에서 약 60nm 깊이까지 탄소와 불소의 침투에 의해 형성되어져 있음을 알았다.

  • PDF

칼슘 도핑을 통한 고 에너지 밀도를 가지는 Ni-rich 층상 구조형 양극 소재의 안정화 (Stabilization of Nickel-Rich Layered Cathode Materials of High Energy Density by Ca Doping)

  • 강범희;홍순현;윤홍관;김도진;김천중
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.273-278
    • /
    • 2018
  • Lithium-ion batteries have been considered the most important devices to power mobile or small-sized devices due to their high energy density. $LixCoO_2$ has been studied as a cathode material for the Li-ion battery. However, the limitation of its capacity impedes the development of high capacity cathode materials with Ni, Mn, etc. in them. The substitution of Mn and Ni for Co leads to the formation of solid solution phase $LiNi_xMn_yCo_{1-x-y}O_2$ (NMC, both x and y < 1), which shows better battery performance than unsubstituted $LiCoO_2$. However, despite a high discharge capacity in the Ni-rich compound (Ni > 0.8 in the metal site), poor cycle retention capability still remains to be overcome. In this study, aiming to improve the stability of the physical and chemical bonding, we investigate the stabilization effect of Ca in the Ni-rich layered compound $Li(Ni_{0.83}Co_{0.12}Mn_{0.05})O_2$, and then Ca is added to the modified secondary particles to lower the degree of cationic mixing of the final particles. For the optimization of the final grains added with Ca, the Ca content (x = 0, 2.5, 5.0, 10.0 at.%) versus Li is analyzed.

Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1115-1119
    • /
    • 2013
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 2-pyridyl thionocarbonate (5b) and t-butyl 2-pyridyl thionocarbonate (6b) with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. General-base catalysis, which has often been reported to occur for aminolysis of esters possessing a C=S electrophilic center, is absent for the reactions of 5b and 6b. The Br${\o}$nsted-type plots for the reactions of 5b and 6b are linear with ${\beta}_{nuc}$ = 0.29 and 0.43, respectively, indicating that the reactions of 5b proceed through a stepwise mechanism with formation of a zwitterionic tetrahedral intermediate ($T^{\pm}$) being the rate-determining step while those of 6b proceed through a concerted mechanism. The reactivity of 5b and 6b is similar to that of their oxygen analogues (i.e., benzyl 2-pyridyl carbonate 5a and t-butyl 2-pyridyl carbonate 6a, respectively), indicating that the effect of modification of the electrophilic center from C=O to C=S (i.e., from 5a to 5b and from 6a to 6b) on reactivity is insignificant. In contrast, 6b is much less reactive than 5b, indicating that the replacement of the $PhCH_2$ in 5b by the t-Bu in 6b results in a significant decrease in reactivity as well as a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway). It has been concluded that the contrasting reactivity and reaction mechanism for the reactions of 5b and 6b are not due to the electronic effects of $PhCH_2$ and t-Bu but are caused by the large steric hindrance exerted by the bulky t-Bu in 6b.

액상 이소프렌 고무가 자외선 경화형 아크릴 점착제의 점착 특성에 미치는 영향 (Effect of Liquid Isoprene Rubber on the Adhesion Property of UV Curable Acrylic Pressure-Sensitive Adhesive)

  • 이지예;정경호
    • Elastomers and Composites
    • /
    • 제49권3호
    • /
    • pp.210-219
    • /
    • 2014
  • 본 연구에서는 아크릴계 점착제를 합성한 후 이소프렌 액상고무를 블렌드하여 광기능성 시트에 적용될 점착제를 제조하였다. 아크릴 점착제의 모노머로는 butyl acrylate, acrylic acid, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate를 사용하였고 용매로는 톨루엔을 사용하였다. 고무계 모노머로는 isoprene 액상고무(LIR-50)를 사용하였고, 아크릴 점착제와의 배합량을 0 ~ 50 wt%로 하여 실험을 진행하였다. 결과에 따르면 LIR-50의 함량이 증가할수록 아크릴계 점착제의 최대 단점이었던 전사현상이 감소하였다. 그 이유는 이소프렌 액상고무의 경우 아크릴 점착제와 달리 극성기가 존재하지 않기 때문에 피착재와 이차결합이 발생하지 않아 경시변화에 따른 전사현상이 감소한 것으로 사료된다. 점착제의 자외선 경화 시 광개시제의 함량이 증가함에 따라, UV에 노출되는 시간이 증가함에 따라 점착제의 경화도가 높아지기 때문에 점착력과 전사현상이 감소하였다. 반면 유지력의 경우는 경화도가 증가하여 분자구조가 망상구조를 이루며 점착제 내부응집력이 증가하기 때문에 유지력은 증가하였다.

Nucleophilic Substitution Reactions of N-Methyl α-Bromoacetanilides with Benzylamines in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.857-862
    • /
    • 2011
  • Kinetic studies of the reactions of N-methyl-Y-${\alpha}$-bromoacetanilides with substituted X-benzylamines have been carried out in dimethyl sulfoxide at $25.0^{\circ}C$. The Hammett plots for substituent X variations in the nucleophiles (log $k_N$ vs ${\sigma}_X$) are slightly biphasic concave upwards/downwards, while the Bronsted plots (log $k_N$ vs $pK_a$) are biphasic concave downwards with breakpoints at X = H. The Hammett plots for substituent Y variations in the substrates (log $k_N$ vs ${\sigma}_Y$) are biphasic concave upwards/downwards with breakpoints at Y = H. The cross-interaction constant $\rho_{XY}$ values are all negative: $\rho_{XY}$ = -0.32 for X = Y = electron-donating; -0.22 for X = electron-withdrawing and Y = electron-donating; -1.80 for X = electron-donating and Y = electronwithdrawing; -1.43 for X = Y = electron-withdrawing substituents. Deuterated kinetic isotope effects are primary normal ($k_H/k_D$ > 1) for Y = electron-donating, while secondary inverse ($k_H/k_D$ < 1) for Y = electronwithdrawing substituent. The proposed mechanisms of the benzylaminolyses of N-methyl-Y-${\alpha}$-bromoacetanilides are a concerted mechanism with a five membered ring TS involving hydrogen bonding between hydrogen (deuterium) atom in N-H(D) and oxygen atom in C = O for Y = electron-donating, while a concerted mechanism with an enolate-like TS in which the nucleophile attacks the ${\alpha}$-carbon for Y = electronwithdrawing substituents.

A Kinetic Study on Aminolysis of S-4-Nitrophenyl Thiobenzoate in H2O Containing 20 mol % DMSO and 44 wt % EtOH: Effect of Medium on Reactivity and Mechanism

  • Ahn, Jung-Ae;Park, Youn-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.214-218
    • /
    • 2009
  • Second-order rate constants ($k_N$) have been measured for nucleophilic substitution reactions of S-4-nitrophenyl thiobenzoate with a series of alicyclic secondary amines in $H_2O$ containing 20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Br$\phi$nsted-type plot exhibits a downward curvature, i.e., $\beta_{nuc}$ decreases from 0.94 to 0.34 as the amine basicity increases. The reactions in the aqueous DMSO have also been suggested to proceed through a zwitterionic tetrahedral intermediate (T${\pm}$) with change in the RDS on the basis of the curved Br$\phi$nsted-type plot. The reactions in the aqueous DMSO exhibit larger $k_N$ values than those in the aqueous EtOH. The macroscopic rate constants ($k_N$) for the reactions in the two solvent systems have been dissected into the microscopic rate constants ($k_1\;and\;k_2/k_{-1}$ ratio) to investigate effect of medium on reactivity in the microscopic level. It has been found that the $k_2/k_{-1}$ ratios are similar for the reactions in the two solvent systems, while $k_1$ values are larger for the reactions in 20 mol % DMSO than for those in 44 wt % EtOH, indicating that the larger $k_1$ is mainly responsible for the larger $k_N$. It has been suggested that the transition state is more stabilized in 20 mol % DMSO through mutual polarizability interaction than in 44 wt % EtOH through H-bonding interaction.

A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2325-2329
    • /
    • 2013
  • Second-order rate constants $k_N$ have been measured for reactions of benzyl 2-pyridyl thionocarbonate (4b) and t-butyl 2-pyridyl thionocarbonate (5b) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 4b and 5b have been compared with those reported previously for the corresponding reactions of benzyl 2-pyridyl carbonate (4a) and t-butyl 2-pyridyl carbonate (5a) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and reaction mechanism. The thiono compound 4b is more reactive than its oxygen analogue 4a. The Br${\o}$nsted-type plots for the reactions of 4a and 4b are linear with ${\beta}_{nuc}=0.57$ and 0.37, respectively. The reactions of 4a were previously reported to proceed through a concerted mechanism, while those of 4b in this study have been concluded to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step on the basis of the ${\beta}_{nuc}$ value of 0.37. Enhanced polarizability upon changing the C=O in 4a by C=S has been suggested to be responsible for the reactivity order and the contrasting reaction mechanisms. In contrast, the reactivity of 5a and 5b is similar, but they are much less reactive than 4a and 4b. Furthermore, the reactions of 5a and 5b have been concluded to proceed through the same mechanism (i.e., a concerted mechanism) on the basis of linear Bronsted-type plots with ${\beta}_{nuc}=0.45$ or 0.47. It has been concluded that the strong steric hindrance exerted by the t-Bu in 5a and 5b causes a decrease in their reactivity and forces the reactions to proceed through a concerted mechanism.

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

keV and MeV Ion Beam Modification of Polyimide Films

  • Lee, Yeonhee;Seunghee Han;Song, Jong-Han;Hyuneui Lim;Moojin Suh
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.170-170
    • /
    • 2000
  • Synthetic polymers such as polyimide, polycarbonate, and poly(methyl methacrylate) are long chain molecules which consist of carbon, hydrogen, and heteroatom linked together chemically. Recently, polymer surface can be modified by using a high energy ion beam process. High energy ions are introduced into polymer structure with high velocity and provide a high degree of chemical bonding between molecular chains. In high energy beam process the modified polymers have the highly crosslinked three-dimensionally connected rigid network structure and they showed significant improvements in electrical conductivity, in hardness and in resistance to wear and chemicals. Polyimide films (Kapton, types HN) with thickness of 50~100${\mu}{\textrm}{m}$ were used for investigations. They were treated with two different surface modification techniques: Plasma Source Ion Implantation (PSII) and conventional Ion Implantation. Polyimide films were implanted with different ion species such as Ar+, N+, C+, He+, and O+ with dose from 1 x 1015 to 1 x 1017 ions/cm2. Ion energy was varied from 10keV to 60keV for PSII experiment. Polyimide samples were also implanted with 1 MeV hydrogen, oxygen, nitrogen ions with a dose of 1x1015ions/cm2. This work provides the possibility for inducing conductivity in polyimide films by ion beam bombardment in the keloelectronvolt to megaelectronvolt energy range. The electrical properties of implanted polyimide were determined by four-point probe measurement. Depending on ion energy, doses, and ion type, the surface resistivity of the film is reduced by several orders of magnitude. Ion bombarded layers were characterized by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), XPS, and SEM.

  • PDF