• Title/Summary/Keyword: second-order-elastic-plastic hinge analysis

Search Result 4, Processing Time 0.015 seconds

Refined plastic hinge analysis of steel frames under fire

  • Chan, S.L.;Chan, B.H.M.
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.111-130
    • /
    • 2001
  • This paper presents an effective, reliable and accurate method for prediction of structural behaviour of steel frames at elevated temperature. The refined plastic hinge method, which has been used successfully in the second-order elasto-plastic analysis of steel frames at ambient conditions, is adopted here to allow for time-independent fire effects. In contrast to the existing rigorous finite element programs, the present method uses the advanced analysis technique that provides a simple and reliable means for practical study of the behaviour of steel frames at elevated temperature by a limiting stress model. The present method is validated against other test and numerical results.

Second-order analysis of planar steel frames considering the effect of spread of plasticity

  • Leu, Liang-Jenq;Tsou, Ching-Huei
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.423-442
    • /
    • 2001
  • This paper presents a method of elastic-plastic analysis for planar steel frames that provides the accuracy of distributed plasticity methods with the computational efficiency that is greater than that of distributed plasticity methods but less than that of plastic-hinge based methods. This method accounts for the effect of spread of plasticity accurately without discretization through the cross-section of a beam-column element, which is achieved by the following procedures. First, nonlinear equations describing the relationships between generalized stresses and strains of the cross-section are derived analytically. Next, nonlinear force-deformation relationships for the beam-column element are obtained through lengthwise integration of the generalized strains. Elastic-plastic flexibility coefficients are then calculated by differentiating the above element force-deformation relationships. Finally, an elastic-plastic stiffness matrix is obtained by making use of the flexibility-stiffness transformation. Adding the conventional geometric stiffness matrix to the elastic-plastic stiffness matrix results in the tangent stiffness matrix, which can readily be used to evaluate the load carrying capacity of steel frames following standard nonlinear analysis procedures. The accuracy of the proposed method is verified by several examples that are sensitive to the effect of spread of plasticity.

Discrete Optimum Design of Steel Framed Structures Subjected to Deformed of Panel Zone (패널영역의 변형을 고려한 강뼈대 구조물의 이산화 최적설계)

  • 박순응;박문호;권민호;장준호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.315-327
    • /
    • 2002
  • The main objective of this study is to develop an discrete optimization algorithm of plane steel frames with rigid using second-order-elastic-plastic hinge analysis which is considering panel zone. Conventional analyses of steel frame are usually tarried out without considering the effect of panel zone deformation on frame behavior The validity of this model is established by comparison without panel zone on joint models is analyzed numerically to demonstrate the importance of using realistic models in steel frame analysis. The objective function is taken as Weight of steel frames and the constraints we formulated based on AISC-LRFD(1994). The validity of the developed algorithm we demonstrate by comparing the result with those of SAP2000. The result of the study indicates that the optimal design algorithm considering of panel zone behavior more economic design than simple steel frame design methods.

Simplified analytical Moment-Curvature relationship for hollow circular RC cross-sections

  • Gentile, Roberto;Raffaele, Domenico
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.419-429
    • /
    • 2018
  • The seismic vulnerability analysis of multi-span bridges can be based on the response of the piers, provided that deck, bearings and foundations remain elastic. The lateral response of an RC bridge pier can be affected by different mechanisms (i.e., flexure, shear, lap-splice or buckling of the longitudinal reinforcement bars, second order effects). In the literature, simplified formulations are available for mechanisms different from the flexure. On the other hand, the flexural response is usually calculated with a numerically-based Moment-Curvature diagram of the base section and equivalent plastic hinge length. The goal of this paper is to propose a simplified analytical solution to obtain the Moment-Curvature relationship for hollow circular RC sections. This based on calibrated polynomials, fitted against a database comprising 720 numerical Moment-Curvature analyses. The section capacity curve is defined through the position of 6 characteristic points and they are based on four input parameters: void ratio of the hollow section, axial force ratio, longitudinal reinforcement ratio, transversal reinforcement ratio. A case study RC bridge pier is assessed with the proposed solution and the results are compared to a refined numerical FEM analysis, showing good match.