• 제목/요약/키워드: second-line treatment

검색결과 245건 처리시간 0.027초

Comparison of in Vitro Cytotoxicity and Apoptogenic Activity of Magnesium Chloride and Cisplatin as Conventional Chemotherapeutic Agents in the MCF-7 Cell Line

  • Mirmalek, Seyed Abbas;Jangholi, Ehsan;Jafari, Mohammad;Yadollah-Damavandi, Soheila;Javidi, Mohammad Amin;Parsa, Yekta;Parsa, Tina;Salimi-Tabatabaee, Seyed Alireza;Kolagar, Hossein Ghasemzadeh;Jalil, Saeed Khazaei;Alizadeh-Navaei, Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권sup3호
    • /
    • pp.131-134
    • /
    • 2016
  • Breast cancer is the most common malignancy and also the second leading cause of cancer death among women and also in women that have a high mortality. Previous studies showed that magnesium (Mg) has cytotoxic effects on malignant cell lines. However, the anti-cancer effects of Mg on MCF-7 breast cancer cells are uncertain. This study was aimed at the comparison of the cytotoxic effect of Mg salt (MgCl2) and cisplatin on MCF-7 cells and fibroblasts (as normal cells). After treatment with various concentrations of MgCl2, and cisplatin as a positive control for 24 and 48 hours (h), cytotoxicity activity was measured by MTT assay. In addition, apoptosis was determined by annexin V/propidium iide assay. Both cisplatin and the MgCl2 exhibited dose-dependent cytotoxic effects in the MCF-7 cell line, although the LD50 of the Mg was significantly higher when compared to cispaltin ($40{\mu}g/ml$ vs. $20{\mu}g/ml$). Regarding annexin V/propidium results, treatment of MCF-7 cells with LD50 concentrations of cisplatin and Mg showed 59% and 44% apoptosis at 24h, respectively. Finally, the results indicated that Mg has cytotoxic effects on MCF-7 cells, but less than cisplatin as a conventional chemotherapeutic agent. However, regarding the side effects of chemotherapy drugs, it seems that Mg can be considered as a supplement for the treatment of breast cancer.

Prognostic Factor Analysis of Overall Survival in Gastric Cancer from Two Phase III Studies of Second-line Ramucirumab (REGARD and RAINBOW) Using Pooled Patient Data

  • Fuchs, Charles S.;Muro, Kei;Tomasek, Jiri;Van Cutsem, Eric;Cho, Jae Yong;Oh, Sang-Cheul;Safran, Howard;Bodoky, Gyorgy;Chau, Ian;Shimada, Yasuhiro;Al-Batran, Salah-Eddin;Passalacqua, Rodolfo;Ohtsu, Atsushi;Emig, Michael;Ferry, David;Chandrawansa, Kumari;Hsu, Yanzhi;Sashegyi, Andreas;Liepa, Astra M.;Wilke, Hansjochen
    • Journal of Gastric Cancer
    • /
    • 제17권2호
    • /
    • pp.132-144
    • /
    • 2017
  • Purpose: To identify baseline prognostic factors for survival in patients with disease progression, during or after chemotherapy for the treatment of advanced gastric or gastroesophageal junction (GEJ) cancer. Materials and Methods: We pooled data from patients randomized between 2009 and 2012 in 2 phase III, global double-blind studies of ramucirumab for the treatment of advanced gastric or GEJ adenocarcinoma following disease progression on first-line platinum- and/or fluoropyrimidine-containing therapy (REGARD and RAINBOW). Forty-one key baseline clinical and laboratory factors common in both studies were examined. Model building started with covariate screening using univariate Cox models (significance level=0.05). A stepwise multivariable Cox model identified the final prognostic factors (entry+exit significance level=0.01). Cox models were stratified by treatment and geographic region. The process was repeated to identify baseline prognostic quality of life (QoL) parameters. Results: Of 1,020 randomized patients, 953 (93%) patients without any missing covariates were included in the analysis. We identified 12 independent prognostic factors of poor survival: 1) peritoneal metastases; 2) Eastern Cooperative Oncology Group (ECOG) performance score 1; 3) the presence of a primary tumor; 4) time to progression since prior therapy <6 months; 5) poor/unknown tumor differentiation; abnormally low blood levels of 6) albumin, 7) sodium, and/or 8) lymphocytes; and abnormally high blood levels of 9) neutrophils, 10) aspartate aminotransferase (AST), 11) alkaline phosphatase (ALP), and/or 12) lactate dehydrogenase (LDH). Factors were used to devise a 4-tier prognostic index (median overall survival [OS] by risk [months]: high=3.4, moderate=6.4, medium=9.9, and low=14.5; Harrell's C-index=0.66; 95% confidence interval [CI], 0.64-0.68). Addition of QoL to the model identified patient-reported appetite loss as an independent prognostic factor. Conclusions: The identified prognostic factors and the reported prognostic index may help clinical decision-making, patient stratification, and planning of future clinical studies.

Hepatitis C Virus Nonstructural 5A Protein (HCV-NS5A) Inhibits Hepatocyte Apoptosis through the NF-κb/miR-503/bcl-2 Pathway

  • Xie, Zhengyuan;Xiao, Zhihua;Wang, Fenfen
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.202-210
    • /
    • 2017
  • The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus (HCV) RNA genome is a multifunctional phosphoprotein. To analyse the influence of NS5A on apoptosis, we established an Hep-NS5A cell line (HepG2 cells that stably express NS5A) and induced apoptosis using tumour necrosis factor $(TNF)-{\alpha}$. We utilised the MTT assay to detect cell viability, real-time quantitative polymerase chain reaction and Western blot to analyse gene and protein expression, and a luciferase reporter gene experiment to investigate the targeted regulatory relationship. Chromatin immunoprecipitation was used to identify the combination of $NF-{\kappa}B$ and miR-503. We found that overexpression of NS5A inhibited $TNF-{\alpha}$-induced hepatocellular apoptosis via regulating miR-503 expression. The cell viability of the $TNF-{\alpha}$ induced Hep-mock cells was significantly less than the viability of the $TNF-{\alpha}$ induced Hep-NS5A cells, which demonstrates that NS5A inhibited $TNF-{\alpha}$-induced HepG2 cell apoptosis. Under $TNF-{\alpha}$ treatment, miR-503 expression was decreased and cell viability and B-cell lymphoma 2 (bcl-2) expression were increased in the Hep-NS5A cells. Moreover, the luciferase reporter gene experiment verified that bcl-2 was a direct target of miR-503, NS5A inhibited $TNF{\alpha}$-induced $NF-{\kappa}B$ activation and $NF-{\kappa}B$ regulated miR-503 transcription by combining with the miR-503 promoter. After the Hep-NS5A cells were transfected with miR-503 mimics, the data indicated that the mimics could reverse $TNF-{\alpha}$-induced cell apoptosis and blc-2 expression. Collectively, our findings suggest a possible molecular mechanism that may contribute to HCV treatment in which NS5A inhibits $NF-{\kappa}B$ activation to decrease miR-503 expression and increase bcl-2 expression, which leads to a decrease in hepatocellular apoptosis.

MicroRNA-214 Regulates the Acquired Resistance to Gefitinib via the PTEN/AKT Pathway in EGFR-mutant Cell Lines

  • Wang, Yong-Sheng;Wang, Yin-Hua;Xia, Hong-Ping;Zhou, Song-Wen;Schmid-Bindert, Gerald;Zhou, Cai-Cun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권1호
    • /
    • pp.255-260
    • /
    • 2012
  • Patients with non-small cell lung cancer (NSCLC) who have activating epidermal growth factor receptor (EGFR) mutations derive clinical benefit from treatment with EGFR-tyrosine kinase inhibitors ((EGFR-TKIs)-namely gefitinib and erlotinib. However, these patients eventually develop resistance to EGFR-TKIs. Despite the fact that this acquired resistance may be the result of a secondary mutation in the EGFR gene, such as T790M or amplification of the MET proto-oncogene, there are other mechanisms which need to be explored. MicroRNAs (miRs) are a class of small non-coding RNAs that play pivotal roles in tumorigenesis, tumor progression and chemo-resistance. In this study, we firstly successfully established a gefitinib resistant cell line-HCC827/GR, by exposing normal HCC827 cells (an NSCLC cell line with a 746E-750A in-frame deletion of EGFR gene) to increasing concentrations of gefitinib. Then, we found that miR-214 was significantly up-regulated in HCC827/GR. We also showed that miR-214 and PTEN were inversely expressed in HCC827/GR. Knockdown of miR-214 altered the expression of PTEN and p-AKT and re-sensitized HCC827/GR to gefitinib. Taken together, miR-214 may regulate the acquired resistance to gefitinib in HCC827 via PTEN/AKT signaling pathway. Suppression of miR-214 may thus reverse the acquired resistance to EGFR-TKIs therapy.

Lymphatic vessel mapping in the upper extremities of a healthy Korean population

  • Lee, Yun-Whan;Lee, Soo-Hyun;You, Hi-Jin;Jung, Jae-A;Yoon, Eul-Sik;Kim, Deok-Woo
    • Archives of Plastic Surgery
    • /
    • 제45권2호
    • /
    • pp.152-157
    • /
    • 2018
  • Background Intraoperative indocyanine green (ICG) lymphography can effectively detect functioning lymph vessels in edematous limbs. However, it is sometimes difficult to clearly identify their course in later-stage edematous limbs. For this reason, many surgeons rely on experience when they decide where to make the skin incision to locate the lymphatic vessels. The purpose of this study was to elucidate lymphatic vessel flow patterns in healthy upper extremities in a Korean population and to use these findings as a reference for lymphedema treatment. Methods ICG fluorescence lymphography was performed by injecting 1 mL of ICG into the second web space of the hand. After 4 hours, fluorescence images of lymphatic vessels were obtained with a near-infrared camera, and the lymphatic vessels were marked. Three landmarks were designated: the radial styloid process, the mid-portion of the cubital fossa, and the lower border of the deltopectoral groove. A straight line connecting the points was drawn, and the distance between the connected lines and the marked lymphatic vessels was measured at 8 points. Results There were 30 healthy upper extremities (15 right and 15 left). The average course of the main lymph vessels passed $26.0{\pm}11.6mm$ dorsal to the styloid process, $5.7{\pm}40.7mm$ medial to the mid-cubital fossa, and $31.3{\pm}26.1mm$ medial to the three-quarters point of the upper landmark line. Conclusions The main functioning lymphatic vessel follows the course of the cephalic vein at the forearm level, crosses the mid-cubital point, and travels medially toward the mid-axilla.

곽향(Agastache rugosa)을 포함한 21종의 한약재가 대식세포주 RAW 264.7 세포의 nitric oxide(NO) 생산 조절에 미치는 효과 (Modulatory Effects of 21 kinds of Medicinal Herbs Including Herba Pogostemi (Agastache rugosa) on Nitric Oxide Production in Macrophage Cell line RAW 264.7 cells)

  • 김승현;강미영;남석현
    • Applied Biological Chemistry
    • /
    • 제48권4호
    • /
    • pp.411-417
    • /
    • 2005
  • 마우스 대식세포주인 RAW264.7 세포에서 곽향(Agastache rugosa)을 포함한 21종의 한약재에서 제조한 열수추출물의 NO생산에 대한 조절효과를 조사하였다. 모든 한약재 추출물은 LPS자극으로 생산된 NO에 대하여 뚜렷한 소거활성을 보이지 않았으나, LPS 무처리 조건에서 곽향이 RAW264.7 세포의 NO생산을 강력하게 유도하였다. $200{\mu}M$의 NOS2의 저해제인 $N^G-monomethyl-L-arginine(N^GMMA$)의 처리에 의하여 곽향이 유도하는 NO 생산은 유의적으로 감소되었다. 또한 $NF-{\kappa}B$ 저해제인 pyrrolidine dithiocarbamate(PDTC)의 처리로 NO 생산이 $100{\mu}M$에서 약 79%까지 감소하였다. 이상의 실험 결과는 곽향 열수추출물이 RAW264.7 세포의 NOS2 발현의 이차적인 세포 내 신호를 발생시킬 수 있으며, NO는 L-arginine 의존적 경로에 의하여 생성된다는 사실을 시사하였다.

Anti-tumor Effects and Apoptosis Induction by Realgar Bioleaching Solution in Sarcoma-180 Cells in Vitro and Transplanted Tumors in Mice in Vivo

  • Xie, Qin-Jian;Cao, Xin-Li;Bai, Lu;Wu, Zheng-Rong;Ma, Ying-Ping;Li, Hong-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2883-2888
    • /
    • 2014
  • Background: Realgar which contains arsenic components has been used in traditional Chinese medicine (TCM) as an anticancer drug. However, neither Realgar nor its formula are soluble in water. As a result, high dose of Realgar has to be administered to achieve an effective blood medicine concentration, and this is associated with adverse side effects. The objective of the present study was to increase the solubility of a formula using hydrometallurgy technology as well as investigating its effects on in vitro and in vivo cell proliferation and apoptosis in Sarcoma-180 cell line. Materials and Methods: Antiproliferative activity of Realgar Bioleaching Solution (RBS) was evaluated by MTT assay. Further, effects of RBS on cell proliferation and apoptosis were studied using flow cytometry and transmission electron microscopy. Kunming mice were administered RBS in vivo, where arsenic specifically targeted solid tumors. Results: The results indicated that RBS extract potently inhibited the tumor growth of Sarcoma-180 cell line in a dose-dependent manner. Flow cytometry and transmission electron microscopy further indicated that RBS significantly induced cell apoptosis through the inhibition of cell cycle pathway in a dose-dependent manner. Further, on RBS administration to mice, arsenic was specifically targeted to solid tumor.s Conclusions: RBS could substitute for traditional Realgar or its formula to work as a potent tool in cancer treatment.

Effects of Aloe-emodin and Emodin on Proliferation of the MKN45 Human Gastric Cancer Cell Line

  • Chihara, Takeshi;Shimpo, Kan;Beppu, Hidehiko;Yamamoto, Naoki;Kaneko, Takaaki;Wakamatsu, Kazumasa;Sonoda, Shigeru
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3887-3891
    • /
    • 2015
  • Aloe-emodin (1, 8-dihydroxy-3-hydroxyl-methylanthraquinone; AE) and emodin (1,3,8-trihydroxy-6-methylanthraquinone; EM) are anthraquinone derivatives that have been detected in some medical plants and share similar anthraquinone structures. AE and EM have been shown to exhibit anticancer activities in various cancer cell lines; however, the inhibitory effects of these derivatives on the growth of cancer cells were previously reported to be different. Gastric cancer is the second most common cause of cancer cell death worldwide. In the present study, we examined the inhibitory effects of 0.05 mM AE and 0.05 mM EM on the proliferation of the MKN45 human gastric cancer cell line. The proliferation of MKN45 cells was significantly inhibited in AE- and EM-treated groups 24 h and 48 h after treatment. Furthermore, the inhibitory effects of EM were stronger than those of AE. The cell cycle of MKN45 cells were arrested in G0/G1 phase or G0/G1 and G2/M phases by AE and EM, respectively. However, an analysis of intracellular polyamine levels and DNA fragmentation revealed that the mechanisms underlying cell death following cell arrest induced by AE and EM differed.

Inhibitors of AKT Signaling Pathway and their Application

  • WONG, Chin Piow
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.33-33
    • /
    • 2019
  • The AKT signaling pathway is a highly regulated cell signaling system that forms a network with other cell signaling pathways. Hence, the AKT signaling pathway mediates several important cellular functions that include cell survival, proliferation, cell migration, and et cetera. Irregularities that led overactive AKT signaling have been linked to many diseases such as cancer and metabolic-associated diseases. Hence, modulating the overactive AKT signaling pathway via inhibitor is a tantalizing prospect for treatment of cancer and metabolic-associated diseases. Two inhibitors of the AKT signaling pathway will be presented in this symposium: 1) Bisleuconothine A (BisA), a bisindole alkaloid that inhibit autophagy and 2) Ceramicine B (CerB), a limonoid that inhibit adipogenesis. The first topic is on a bisindole alkaloid, BisA and its mechanism in inducing autophagosome formation in lung cancer cell line, A549.(1) Since most autophagy inducing agents generally induce apoptosis, we found that BisA does not induce apoptosis even in high dose. BisA up-regulation of LC3 lipidation is achieved through mTOR inactivation. The phosphorylation of PRAS40, a mTOR repressor was suppressed by BisA. This observation suggested that BisA inactivates mTOR via suppression of PRAS40 phosphorylation. Interestingly, the phosphorylation of AKT, an upstream regulator of PRAS40 phosphorylation was also down-regulated by BisA. These findings suggested that Bis-A induces autophagosomes formation by interfering with the AKT-mTOR signaling pathway. The second topic is on CerB and its mechanism in inhibiting adipogenesis in preadipocytes cell line, MC3T3-G2/PA6.(2,3) CerB inhibits the phosphorylation of protein kinase B (AKT) at the Thr308 position but not the Ser473. Consequently, the phosphorylation of FOXO3 which is located downstream of AKT is also inhibited. Considering that FOXO3 is an important regulator of PPARγ which is a key factor in adipogenesis, CerB may inhibit adipogenesis via the AKT-FOXO3 signaling pathway. Taken together, both BisA and CerB highlighted the potential of AKT signaling pathway modulation as an approach to induce autophagy and inhibit the formation of fat cells, respectively.

  • PDF

Anti-tumor activities of Panax quinquefolius saponins and potential biomarkers in prostate cancer

  • He, Shan;Lyu, Fangqiao;Lou, Lixia;Liu, Lu;Li, Songlin;Jakowitsch, Johannes;Ma, Yan
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.273-286
    • /
    • 2021
  • Background: Prostate carcinoma is the second most common cancer among men worldwide. Developing new therapeutic approaches and diagnostic biomarkers for prostate cancer (PC) is a significant need. The Chinese herbal medicine Panax quinquefolius saponins (PQS) have been reported to show anti-tumor effects. We hypothesized that PQS exhibits anti-cancer activity in human PC cells and we aimed to search for novel biomarkers allowing early diagnosis of PC. Methods: We used the human PC cell line DU145 and the prostate epithelial cell line PNT2 to perform cell viability assays, flow cytometric analysis of the cell cycle, and FACS-based apoptosis assays. Microarray-based gene expression analysis was used to display specific gene expression patterns and to search for novel biomarkers. Western blot and quantitative real-time PCR were performed to demonstrate the expression levels of multiple cancer-related genes. Results: Our data showed that PQS inhibited the viability of DU145 cells and induced cell cycle arrest at the G1 phase. A significant decrease in DU145 cell invasion and migration were observed after 24 h treatment by PQS. PQS up-regulated the expression levels of p21, p53, TMEM79, ACOXL, ETV5, and SPINT1 while it down-regulated the expression levels of bcl2, STAT3, FANCD2, DRD2, and TMPRSS2. Conclusion: PQS promoted cells apoptosis and inhibited the proliferation of DU145 cells, which suggests that PQS may be effective for treating PC. TMEM79 and ACOXL were expressed significantly higher in PNT2 than in DU145 cells and could be novel biomarker candidates for PC diagnosis.