• 제목/요약/키워드: second tangent bundle

검색결과 2건 처리시간 0.015초

SECOND ORDER TANGENT VECTORS IN RIEMANNIAN GEOMETRY

  • Kwon, Soon-Hak
    • 대한수학회지
    • /
    • 제36권5호
    • /
    • pp.959-1008
    • /
    • 1999
  • This paper considers foundational issues related to connections in the tangent bundle of a manifold. The approach makes use of second order tangent vectors, i.e., vectors tangent to the tangent bundle. The resulting second order tangent bundle has certain properties, above and beyond those of a typical tangent bundle. In particular, it has a natural secondary vector bundle structure and a canonical involution that interchanges the two structures. The involution provides a nice way to understand the torsion of a connection. The latter parts of the paper deal with the Levi-Civita connection of a Riemannian manifold. The idea is to get at the connection by first finding its.spary. This is a second order vector field that encodes the second order differential equation for geodesics. The paper also develops some machinery involving lifts of vector fields form a manifold to its tangent bundle and uses a variational approach to produce the Riemannian spray.

  • PDF

Notes on the Second Tangent Bundle over an Anti-biparaKaehlerian Manifold

  • Nour Elhouda Djaa;Aydin Gezer
    • Kyungpook Mathematical Journal
    • /
    • 제63권1호
    • /
    • pp.79-95
    • /
    • 2023
  • In this note, we define a Berger type deformed Sasaki metric as a natural metric on the second tangent bundle of a manifold by means of a biparacomplex structure. First, we obtain the Levi-Civita connection of this metric. Secondly, we get the curvature tensor, sectional curvature, and scalar curvature. Afterwards, we obtain some formulas characterizing the geodesics with respect to the metric on the second tangent bundle. Finally, we present the harmonicity conditions for some maps.