• Title/Summary/Keyword: second harmonic generation

Search Result 186, Processing Time 0.029 seconds

Second Harmonic Generation study on the transport dynamics of small molecules across liposome bilayers

  • Kim, Joon-Heon;Kim, Mahn-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.79-79
    • /
    • 2003
  • SHG (Second harmonic generation) can be used to probe the surface of centrosymmetric particles suspended in bulk isotropic solution, because it is forbidden in centrosymmetric media under the dipole approximation. Using this technique, we can study the transport dynamics of small organic dye molecules across liposome bilayers. Because molecules adsorbed on the outer layer are in opposite direction with that on the inner layer by symmetry, the SH field is proportional to the difference between the number density of dye molecules on both sides of the bilayer, and the time dependence of the SH intensity is related to the time constant of the molecular transportation of dye molecules across liposome bilayers.

  • PDF

Synthesis and Properties of Novel Y-type Nonlinear Optical Polyester Containing Cyanovinylthiophene with Enhanced Thermal Stability of Second Harmonic Generation

  • Lee, Ga-Young;Kim, Jin-Hyang;Jang, Han-Na;Won, Dong-Seon;No, Hyo-Jin;Lee, Ju-Yeon;Rhee, Bum-Ku;Choi, Hee-Dok
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.661-666
    • /
    • 2009
  • 1-{2,4-Di-(2-hydroxyethoxy)phenyl}-2-(2-thienyl)ethene (5) was prepared and condensed with terephthaloyl chloride to yield polyester (6). Polymer 6 was reacted with tetracyanoethylene to give novel Y-type polyester (7) containing 1-(2,4-dioxyethoxy)phenyl-2-{5-(2,2,3-tricyanovinyl)-2-thienyl)}ethenyl groups as NLO-chromophores, which are parts the polymer backbones. Polymer 7 is soluble in common organic solvents such as acetone and N,N-dimethylformamide. It showed thermal stability up to 300 ${^{\circ}C}$ in thermogravimetric analysis with glasstransition temperature obtained from differential scanning calorimetry near 134 ${^{\circ}C}$. The second harmonic generation (SHG) coefficient ($d_33$) of poled polymer film at the 1560 nm fundamental wavelength was around 6.74 x $10^{-9}$ esu. The dipole alignment exhibited high thermal stability up to the glass-transition temperature ($Tg$), and there was no SHG decay below 135 ${^{\circ}C}$ because of the partial main-chain character of polymer structure, which is acceptable for NLO device applications.

Finite Element Analysis of Harmonics Generation by Nonlinear Inclusion

  • Yang, Seung-Yong;Kim, No-Hyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.564-568
    • /
    • 2010
  • When ultrasound propagates to a crack, transmitted and reflected waves are generated. These waves have useful information for the detection of the crack lying in a structure. When a crack is under residual stress, crack surfaces will contact each other and a closed crack is formed. For closed cracks, the fundamental component of the reflected and transmitted waves will be weak, and as such it is not easy to detect them. In this case, higher harmonic components will be useful. In this paper, nonlinear characteristic of a closed crack is modeled by a continuum material having a tensile-compressive unsymmetry, and the amplitude of the second harmonic wave was obtained by spectrum analysis. Variation of the second harmonic component depending on the nonlinearity of the inclusion was investigated. Two-dimensional plane strain model is considered, and finite element software ABAQUS/Explicit is used.

Nonlinear Time Reversal Focusing and Detection of Fatigue Crack

  • Jeong, Hyun-Jo;Barnard, Dan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.355-361
    • /
    • 2012
  • This paper presents an experimental study on the detection and location of nonlinear scattering source due to the presence of fatigue crack in a laboratory specimen. The proposed technique is based on a combination of nonlinear elastic wave spectroscopy(NEWS) and time reversal(TR) focusing approach. In order to focus on the nonlinear scattering position due to the fatigue crack, we employed only one transmitting transducer and one receiving transducer, taking advantage of long duration of reception signal that includes multiple linear scattering such as mode conversion and boundary reflections. NEWS technique was then used as a pre-treatment of TR for spatial focusing of reemitted second harmonic signal. The robustness of this approach was demonstrated on a cracked specimen and the nonlinear TR focusing behavior is observed on the crack interface from which the second harmonic signal was originated.