• Title/Summary/Keyword: seasonal effects

Search Result 603, Processing Time 0.029 seconds

Seasonal Dynamics of Fish Fauna and Compositions in the Gap Stream Along With Conventional Water Quality

  • Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.503-510
    • /
    • 2007
  • The purposes of the study were to analyze the seasonal effects on the fish fauna and compositions including trophic guilds and tolerance guilds. For the study, we collected fish samples twice in June as premonsoon period and early September 2007 as monsoon periods in five sampling sites of the Gap Stream, and then biological oxygen demand (BOD), nutrients (TN, TP) and suspended solids (SS) were compared with the guild data along the gradient of upstream-to-downstream. Chemical water quality, based on BOD, TP, and TN degraded gradually from the upstream to downstream reach and there were about 3 fold difference between S1 and S5. Water quality was worse in the premonsoon than the monsoon, and the heavy monsoon resulted in a dilution of the polluted river by rain water, especially, in the downstream reach. Total number of fish species, based on the catch per unit effort (CPUE), showed a distinct difference between the two seasons; 30 species were sampled in premonsoon, but 23 species were sampled in the monsoon, indicating a seasonal difference in the fish fauna. Tolerant species dominated the fish community (48.3%) in the stream, and the proportions prior to physical disturbance by the monsoon rain were evidently greater in the downstream reach than the upstream. This reflected the characteristics of urban stream polluted by nutrient enrichment as shown in the BOD and TP values. Sensitive species in the premonsoon decreased from the gradient of upstream-to-downstream reach. Such seasonal modifications in the trophic and tolerance guilds were evident. In the analysis of trophic guild and habitat guild, during the premonsoon the proportion of insectivore and riffle-benthic species were largely greater in the upstream reach than the downstream, whereas the proportions were opposite along the gradient of the stream in monsoon. Thus, the patterns of chemical water quality along the longitudinal gradients reflected the premonsoon conditions of insectivores and tolerant species, indicating that summer monsoon data of fish may not match with water quality due to large physical disturbance by flow regime. Seasonal monsoon in this region as well as the chemical pollution may act as a key role influencing the fish compositions of trophic and tolerance guilds and fauna. The data collected during the premonsoon rather than the monsoon, thus, may be better predictor for a diagnosis of stream health conditions.

Indoor PM2.5 Concentration Distribution and Health Risk Assessment according to the Implementation of a Seasonal Management System (미세먼지 계절관리제 시행 여부에 따른 실내 PM2.5 농도 분포 및 노출에 따른 건강위해성 평가)

  • Shin-Young Park;Dann-Ki Yoon;Hyeok Jang;Sung Won Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.218-227
    • /
    • 2023
  • Background: Since 2019, the Ministry of Environment has implemented a seasonal fine dust management system from December to March, targeting high PM2.5 levels with the aim of reducing PM2.5 concentrations and protecting public health. The focus of improving the seasonal management system lies in the atmospheric PM2.5 levels. Considering the primary goal of protecting public health, it is necessary to analyze the policy effects from an exposure perspective rather than a concentration-based approach. Objectives: This study aims to quantitatively assess the improvement of indoor PM2.5 levels and the health impacts of the seasonal management system by comparing the periods before and during its implementation in residential environments. Methods: PM2.5 concentrations within residential environments in a metropolitan area were measured using an optical particle counter (IAQ-C7, K-weather, Ltd, Korea) at one-minute intervals during the pre-implementation period (November 21~25, 2022) and during the implementation period (December 19~23, 2022). Based on the measured PM2.5 concentrations, a quantitative evaluation of cancer and mortality risks was conducted according to age and gender. Results: The results of comparing indoor and outdoor PM2.5 concentrations before and during the implementation of the seasonal management system showed a decrease of approximately 56.6% and 47.9%, respectively. Health risk assessments revealed that both the safety-limit-based and safety-target-based Hazard Quotients (HQ) exceeded the threshold of 0.1 for children under 19 years of age, both before and after the implementation. The mortality risk decreased by approximately 47.9% after the implementation, with children aged 0-9 showing the highest mortality risk at 0.9%. Conclusions: The findings of this study confirmed the positive health impacts of the seasonal management system across all age groups, particularly children under 19 who are more vulnerable to fine dust exposure.

X11ARIMA Procedure (한국형 X11ARIMA 프로시져에 관한 연구)

  • 박유성;최현희
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.335-350
    • /
    • 1998
  • X11ARIMA is established on the basis of X11 which is one of smoothing approach in time series area and this procedure was introduced by Bureau of Census of United States and developed by Dagum(1975). This procedure had been updated and adjusted by Dagum(1988) with 174 economic index of North America and has been used until nowadays. Recently, X12ARIMA procedure has been studied by William Bell et.al. (1995) and Chen. & Findly(1995) whose approaches adapt adjusting outliers, Trend-change effects, seasonal effect, arid Calender effect. However, both of these procedures were implemented for correct adjusting the economic index of North America. This article starts with providing some appropriate and effective ARIMA model for 102 indexes produced by national statistical office in Korea; which consists of production(21), shipping(27), stock(27), and operating rate index(21). And a reasonable smoothing method will be proposed to reflect the specificity of Korean economy using several moving average model. In addition, Sulnal(lunar happy new year) and Chusuk effects will be extracted from the indexes above and both of effects reflect contribution of lunar calender effect. Finally, we will discuss an alternative way to estimate holiday effect which is similar to X12ARIMA procedure in concept of using both of ARIMA model and Regression model for the best fitness.

  • PDF

The Effects of Pollutants into Sub-basin on the Water Quality and Loading of Receiving Streams (하천 수질 및 부하량에 미치는 유역 내 오염원의 영향)

  • Han, Mideok;Son, Jeeyoung;Ryu, Jichul;Ahn, Kihong;Kim, Yongseok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.648-658
    • /
    • 2014
  • We examined the effects of pollutants into sub-basin on the water quality and loading based on data surveyed during January-December 2013 from 13 sites of 5 streams in the Jinwi watershed. We used the contour plot and Kruskal-Wallis rank sum test to analyze seasonal variation of water quality and loading and Pearson correlation analysis to assess the relationships between pollutants and loadings. The significantly higher seasonal variation were SS, TN and TOC as compared to other water quality constituents (P < 0.001). A significant interaction existed between the effects of human population and the effects of discharge of Sewage Treatment Plant (STP) on water quality and loading, especially for the spring and winter seasons. It is necessary to control discharge water of sewage and wastewater from industrial facilities and to make full use of the watershed management system such as TMDLs in operation since 2012 for improvement in stream water quality.

Effects of Nitrogen and Phosphorus Fertilization on Seasonal Changes and Retranslocation of Nutrition in Foliage and Twig of Pinus rigida and Larix kaempferi (질소와 인 시비가 리기다소나무와 낙엽송 침엽 및 소지에서의 부위별 양분의 계절적 변화 및 재분배에 미치는 영향)

  • 이임균;손요환
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.199-210
    • /
    • 2004
  • Effects of nitrogen and phosphorus fertilization on seasonal changes of nutrient content in tree components, and retranslocation N and P in foliage and twig were determined in adjacent 41-year-old plantations of Pinus rigida Miller and Larix kaempferi Gordon on a similar soil in Yangpyeong, Gyeonggi Province. In general, foliage N and P concentrations of L kaempferi were significantly higher than current and 1-year-old foliages of P. rigida. N and P concentrations were higher in foliage than in twigs for both tree species. However, there were no significant differences in foliage and twig N and P concentrations with ages. Significant seasonal differences in foliage and twig N and P concentrations were observed for both tree species because of nutrient retranslocation. Foliage nutrient concentrations were highest in the mid-growing season and lowest in autumn, whereas twig nutrient concnetrations have gradually increased since July. These seasonal trends indicated nutrient retranslocation from foliage into twigs before foliage senescence. However, there were no significant changes in foliage and twig nutrient retranslocation, and no consistent patterns in foliage and twig nutrient retranslocation following N and P fertilizer additions. No significant changes in nutrient retranslocation between different foliage and twig ages were observed following fertilization.

Effects of Various Estrus Synchronization and Seasonal Breeding in Hanwoo (한우의 계절번식과 다양한 발정제어 효과에 관한 연구)

  • 이명식;최창용;오운용;조영무;이지웅;김영근;성환후;양화정;손삼규
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.1
    • /
    • pp.29-33
    • /
    • 2001
  • This study was conducted to investigate the effects of various estrus synchronization and seasonal breeding in Hanwoo. Delivery interval and number of service per conception were 412.9 and 1.76 in the annual breeding and 376.59 and 1.48 in the seasonal breeding, respectively. The percentage of cows exhibiting estrus in PG $F_{2{\alpha}}$, PRID, CIDR and CnRH-PG $F_{2{\alpha}}$-GnRH were 68.1%(141/207), 71.42%(15/20), 56.8%(33/38) and 93.1%(216/232), respectively. A greater percentage of GnRH-PG $F_{ 2{\alpha}}$-GnRH treatment became pregnant(91.1%) than across all treatments(75.0%, 81.0%, 89.6%). The results show that GnRH-PG $F_{2{\alpha}}$-GnRH treatment f3r pregnant in Hanwoo seems to be more effective than the others.

  • PDF

The Effects of Atmospheric River Landfalls on Precipitation and Temperature in Korea (Atmospheric River 상륙이 한반도 강수와 기온에 미치는 영향 연구)

  • Moon, Hyejin;Kim, Jinwon;Guan, Bin;Waliser, Duane E.;Choi, Juntae;Goo, Tae-Young;Kim, Youngmi;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.343-353
    • /
    • 2019
  • The seasonal climatology of atmospheric rivers (ARs) and their effects on the seasonal precipitation and temperature in Korea are examined using the AR chronology obtained by a methodology based on the vertically integrated water vapor transport (IVT) in conjunction with a fine-scale gridded analysis of station precipitation and temperature. ARs are found to affect Korea most heavily in the warm season with minimal impacts in winter. This contrasts the AR effects in the western North America and the Western Europe that are affected most in winters. Significant portions of precipitation in Korea are associated with AR landfalls for all seasons; over 35% (25%) of the summer (winter) rainfall in the southern part of the Korean peninsula. The percentage of AR precipitation over Korea decreases rapidly towards the north. AR landfalls are also associated with heavier-than-normal precipitation events for all seasons. AR landfalls are associated with above-normal temperatures in Korea; the warm anomalies increase towards the north. The warm anomalies during AR landfalls are primarily related to the reduction in cold episodes as the AR landfalls in Korea are accompanied by anomalous southerlies/southwesterlies.

Studies on the Photosynthesis of Korean Ginseng III. Effects of the Light Transparent Rate of Shading on the Photosynthesis Ability of Korean Ginseng Plant (Panax ginseng C. A. Meyer) (고려인삼엽의 광합성능력에 관한 연구 III. 투광율이 광합성 능력에 미치는 영향)

  • 조재성;원준연;목성균
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.408-415
    • /
    • 1986
  • This study was conducted to define the effects of light transparent rate of the shading on the photosynthesis ability of the ginseng leaves and their seasonal changes. Regardless the effects of light transparent rate of shading and age of ginseng plant, 10,000 lux was the most adequate light intensity for the maximum photosynthesis of ginseng leaves and seasonal difference was not significant. The ginseng plants which were grown under 10 to 15 percent light transparent shading showed the highest photosynthesis ability. The photosynthesis ability of ginseng leaves was significantly decreased in September than June and the decreasing rate was higher at the ginseng plants planted on back rows than front rows. In June, the ginseng plants grown under 10 to 15 percent light transparent shading showed high respiration amount but in September, those grown under 20 to 25% light transparent shading showed the highest respiration. The amount of chlorophyll of ginseng leaf was significantly decreased by increasing light transparent rate of shading.

  • PDF

Effects of Wastewater Treatment Plants (WWTPs) on Downstream Water Quality and Their Comparisons with Upstream Water Quality in Major Korean Watersheds

  • Jang, Seong-Hui;Kim, Hyun-Mac;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.465-475
    • /
    • 2009
  • The purpose of the study was to evaluate spatial and temporal effects of wastewater treatment plants (WWTPs) on the water quality of downstreams (Tan Stream, TS; Daemyeong Stream, DS; Gwangju Stream, GS, and Kap Stream, KS) located in four major watersheds along with impact analysis of nutrient enrichments on the WWTPs during 2004~2008. In the four streams, seasonal means of BOD, COD, TN, and TP were significantly (p<0.01) greater in the downstreams ($D_s$) than the upstreams ($U_s$). The removal effect of nutrients (nitrogen, and phosphorus) from the WWTPs was much less than the BOD, indicating a greater nutrient impact on the downstreams. Seasonal dilution of organic matter, based on BOD, during the summer monsoon of July~September was most pronounced in the downstreams of all four watersheds. However, mean TN in the downstreams during the monsoon varied little in all four streams. Regression analysis of TN in the downstreams against TN from the WWTPs showed that in the TS, and DS regression slopes in the upstreams were similar to the slopes of downstream but there was a significant difference in the GS (p<0.001) and KS (p<0.01). Tan-Stream WWTP showed low removal efficiency of BOD and COD concentrations, compared to the nutrients, whereas, two WWTPs of Gwangju and Kap Stream had low removal effects in TN and TP. Regression analysis of TN and BOD in the downstreams showed that they was closely related (p<0.01) with stream water volume only in the GS. Our data analysis suggests that greater treatment efficiencies of phosphorus and nitrogen from the WWTPs may improve the downstream water quality.

Estimated Headwater Stream Temperature Using Environmental Factors with Seasonal Variations in a Forested Catchment (환경인자를 이용한 산지계류의 계절별 수온변화 예측)

  • Nam, Sooyoun;Jang, Su-Jin;Kim, Suk-Woo;Lee, Youn-Tae;Chun, Kun-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2020
  • To estimate headwater stream temperature with seasonal variations, we analyzed precipitation, runoff and air temperature in experimental forest of Kangwon National University, Gangwon-do (2017~2018 years). The daily mean value of headwater stream temperature for spring was 6.9~17.7℃ and correlated with air temperature, that for summer and fall were 12.2~26.3℃ and 3.6~19.3℃, correlated with air temperature and runoff. Based on seasonal variations, we applied for stepwise multiple linear regression analyses to estimate headwater stream temperature with seasonal variations. The equations were headwater stream temperature(WT)spring=(0.553×Air temperature)+(0.086×Runoff)+4.145 (R2=0.505; p<0.01), WTsummer=(0.756×Air temperature)+(-0.072×Runoff)+2.670 (R2=0.510; p<0.01), and WTfall=(0.738×Air temperature)+(0.028×Precipitation)+2.660 (R2=0.844; p<0.01). The coefficient of determination (R2) was greater than when it was estimated by air temperature in all seasons and progressively increased from spring to winter. Therefore, we indicated difference on estimated magnitude of stepwise multiple linear regression, due to effects on headwater stream temperature of different environmental factors with seasonal variations. Furthermore, temporal factors with spatial characteristics (e.g., river versus headwater stream) could be recommended for estimating headwater stream temperature.