• Title/Summary/Keyword: seamless texture mapping

Search Result 2, Processing Time 0.298 seconds

Texture Mapping using Multiperiodic Function on the Smooth Genus N Object (Multiperiodic 함수를 이용한 Smooth Genus N 객체의 텍스쳐매핑)

  • Hwa Jin Park
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.1
    • /
    • pp.94-104
    • /
    • 2002
  • This paper presents a new way of texture mapping on the Genus N object constructed over a single domain. The problem of 2D texture mapping is the discontinuity of texture domain at the virtual boundary on the object. Such phenomenon decreases smoothness of the object as well as looks unnatural. Especially it is necessary for the Genus N object of infinite coninuity to apply the seamless texture mapping. For seamless texture mapping, a multiperiodic function, which transforms a discontinuous function into a continuous function, is suggested. In some applications, however, the visual seams on the textured object provide more realistic appearance. Therefore, this research supports the interactive control from the discontinuity and the continuity across the boundary using the coefficient of the weight function.

  • PDF

Real-Time Terrain Visualization with Hierarchical Structure (실시간 시각화를 위한 계층 구조 구축 기법 개발)

  • Park, Chan Su;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.311-318
    • /
    • 2009
  • Interactive terrain visualization is an important research area with applications in GIS, games, virtual reality, scientific visualization and flight simulators, besides having military use. This is a complex and challenging problem considering that some applications require precise visualizations of huge data sets at real-time rates. In general, the size of data sets makes rendering at real-time difficult since the terrain data cannot fit entirely in memory. In this paper, we suggest the effective Real-time LOD(level-of-detail) algorithm for displaying the huge terrain data and processing mass geometry. We used a hierarchy structure with $4{\times}4$ and $2{\times}2$ tiles for real-time rendering of mass volume DEM which acquired from Digital map, LiDAR, DTM and DSM. Moreover, texture mapping is performed to visualize realistically while displaying height data of normalized Giga Byte level with user oriented terrain information and creating hill shade map using height data to hierarchy tile structure of file type. Large volume of terrain data was transformed to LOD data for real time visualization. This paper show the new LOD algorithm for seamless visualization, high quality, minimize the data loss and maximize the frame speed.