• 제목/요약/키워드: seam strength

검색결과 81건 처리시간 0.025초

봉제속도에 따른 봉합강도에 관한 연구 (A Study on Seam Strength according to Sewing Speed)

  • 김정진;장정대
    • 한국의류학회지
    • /
    • 제23권7호
    • /
    • pp.998-1006
    • /
    • 1999
  • This study has investigated the relation between the sewing speed and seam breaking strength applied perpendicular to the seam direction. Breaking strength efficiency breaking mode of seams were examined under various sewing conditions using three kinds of sewing threads and four kinds of fabrics. The results obtained are as follows : 1. According to the increase in sewing speed seam strength was remarkably decreased. Seam strength and its loss difference were shown variously as threads and fabrics were mixed. 2. In case of fabrics with higher strength seam strength showed higher. And the seam strength was determined by the loop strength. 3. In case of fabrics with lower strength seam strength and its difference for every sample showed lower. So the strength of fabrics dominated the seam strength than those of threads. 4. In the experiment using various fabrics and sewing threads there was a type of thread appropriate to each fabric. Fabrics and threads with have similar physical properties were shown proper seam efficiency. 5. The breaking mode was different for every sample seam that was tested.

  • PDF

세번수 면직물의 땀수 변화에 따른 봉합강도 (Seam Strength Depending on the Change of Stitch Density of Fine Cotton Fabrics)

  • 어미경
    • 한국의상디자인학회지
    • /
    • 제15권2호
    • /
    • pp.57-64
    • /
    • 2013
  • As the clothing materials have been more functional and advanced, the cotton fabrics for dress shirts or blouses have been more qualified and the sewability for high degree of completion has been required. This study aims to identify the seam strength depending on the change of stitch density of fine cotton fabrics by fabric and thread and so the general seam performance of fine cotton fabrics by analyzing the seam efficiency and breaking mode of seams. For an experiment, 3 kinds of fine cotton fabrics and 2 kinds of threads were selected and the sample was made by changing the stitch density by four steps. Then, the seam strength was measured. Next, the seam efficiency and breaking mode of seams were analyzed on the basis of the results of seam strength measurement. The results are as follows: All fabrics showed the similar tendency in seam strength. The seam strength is related to the tensile strength and thread strength, it increased only to a certain stitch density. When the stitch density exceeded a certain level, fabrics were destroyed or threads were cut. Then, the seam strength didn't increase. Furthermore, the more the seam strength increased, the more the seam efficiency increased. For increasing the maximum stitch density, it was required to use the fabrics and threads which had similar properties, in other words, the high thread strength for the high tensile strength and the low thread strength for the high tensile strength.

  • PDF

의류 안감의 봉합강도 및 실 미끄럼저항에 관한 연구 (A Study on the Seam Strength and Resistance to Slippage of Yarns of Lining Fabrics)

  • 어미경;박명자
    • 한국의류산업학회지
    • /
    • 제7권4호
    • /
    • pp.433-438
    • /
    • 2005
  • Seven commercial lining fabrics normally used in a market were selected: plain-weave fabrics with polyester, nylon, rayon and acetate fiber, and polyester textured yarn, in addition, polyester fabrics with plain, twill and satin weave. Then seam strength, seam efficiency, resistance to slippage of yarns and type of seam destruction were examined related to endurance by textiles in sewing capability of the lining fabrics. In results, as tensile strength was greater, seam strength got greater, which shows tensile strength and seam strength have close relationship. Tensile and seam strength of acetate fabric were the least, but seam efficiency was the greatest. It presents that strong tensile and seam strengths do not show high seam efficiency at the same time. Various types of seam destruction have been shown. When tensile strength of the sewing thread was greater than tensile strength of fabric, fabric destruction was occurred before the sewing thread destruction. When tensile strength of the fabric was greater than seam strength, the sewing thread destruction was occurred. Resistance to slippage of yarns got greater as tensile strength of the fabric got greater. The plain-weave fabric, which tensile strength of fabric was smaller, showed the greater resistance to slippage of yarns than twill and satin weave fabrics. The stretch fabric revealed the optimal lining fabric with the greatest resistance to slippage of yarns.

세번수 면직물의 재단 방향 변화에 따른 봉합강도 (Seam Strength Depending on the Change of Cutting Direction of Fine Cotton Fabrics)

  • 어미경
    • 한국의상디자인학회지
    • /
    • 제15권3호
    • /
    • pp.33-40
    • /
    • 2013
  • This paper focused on investigating the seam strength by cutting direction depending on the fabrics and weave by comparing the tensile strength and elongation of bias, warp and weft of 4 kinds of find cotton fabrics and combining 6 kinds of seam cutting directions. The cutting directions are selected the warp direction, weft direction and 45-degree bias direction. Then, three kinds of directions, the warp/warp direction, the weft/weft direction and the bias/bias directions, and the three different kinds of directions, the warp/weft direction, the warp/bias direction and the weft/bias directions, were finally selected. The results are as follows: The tensile strength of all fabrics was higher in the order of warp, bias and weft direction and tensile elongation was higher in the order of bias, warp and weft direction in almost all fabrics. 100's and 150's cotton fabrics showed the highest seam strength when they were cut in the bias/bias direction. The seam strength of the fabrics cut in the same direction was the highest in the fabrics cut in the bias/bias direction. Four kinds of fabrics demonstrated the similar seam strength. However, for the seam strength of fabrics cut in the different directions, 100's cotton fabrics had the difference of seam strength by direction and weave, but 150's cotton fabrics didn't have any difference in seam strength by direction and weave. As described above, the seam strength was influenced by the cutting direction of fabrics. Accordingly, the seam strength can be improved by changing the cutting direction of seam when making the clothing.

  • PDF

기계 산업용 작업복 의복구성요인과 봉제성능 분석 - 소재 및 솔기별 봉합강도와 봉합신도 중심으로 - (The Analysis on the Clothing Construction Factors and the Sewability of the Mechanical Industry Working Clothes - With Reference to the Seam Strength and Seam Elongation According to the Material and Seam Types -)

  • 박진아
    • 패션비즈니스
    • /
    • 제14권2호
    • /
    • pp.57-72
    • /
    • 2010
  • The purposes of the research were to find out the clothing construction factors of the mechanical industry working clothes by analyzing the working clothes supplied to 5 subject companies; and to suggest the optimized sewing conditions and the seam strength and elongation experimental data according to the clothing material and seam types implied to the working clothes collected. The fabric types and trimmings used for the mechanical manufacturing working clothes were Polyester/Cotton(65/35%), Polyester/Rayon(65/35%), Cotton(100%); and linings, interlining, various fastenings etc. 2 stitch types, i.e. lock and two-thread chain stitches were applied to the construction of the flat, lap felled, French, superimposed, lapped and bound seams for the seam strength and elongation experiment. The results derived from the experiment were as follows. (1) The seam strength results according to the seam types were high in the order of lap felled>lapped>flat, superimposed and French seams. (2) Considering the features of the seam construction, as the number of fabric layers at the seam line increased the seam strength also increased. (3) Apart from the highest seam strength from the experiment using the net lining with the main fabric, the seam construction consisting of two fabric layers with the interlining showed relatively high seam strength results. (4) The seam elongations according to the stitch types were high in the order of two-thread chain>lock stitches.

솔기유형에 따른 손바느질과 재봉질의 봉합강도 (Seam Strength of Hand Sewing and Machine Sewing according to The Seam Type in Korea Costumes)

  • 김정진;장정대
    • 한국의류산업학회지
    • /
    • 제2권2호
    • /
    • pp.146-149
    • /
    • 2000
  • This study has been investigated the comparison of the seam strength of hand sewing with machine sewing using two kinds of sewing thread. On machine sewing, thread is used for sale, on hand sewing, thread is used for every fabric weft yarn. Breaking strength, efficiency and breaking mode of seams were examined under various sewing conditions using three kinds of fabric and three kinds of stitch type. The results obtained are as follows: The seam strength is not affected by sewing mechanism, but affected by a breaking mode : The type of slipped mode has a higher seam strength of hand sewing than that of machine sewing. When fabrics and threads were broken by a higher seam strength of machine sewing than that of hand sewing. Fabrics having low density using plain seam slipped more easily, so seam strength was greatly lesser. Fabrics having higher density had higher to seam strength. We should choose appropriate seams based on production, economy and aesthetics.

  • PDF

폴리우레탄 코팅포의 봉제성능 (The Sewability of polyurethane coated fabrics)

  • 신혜원;이정순
    • 한국의류학회지
    • /
    • 제25권2호
    • /
    • pp.350-357
    • /
    • 2001
  • In this study, seam strength, seam elongation and seam efficiency of polyurethane coated fabrics were examined under various sewing conditions using three kinds of fabrics, four kinds of sewing threads and three kinds of stitch lengths. And the sewability of polyurethane coated fabrics were evaluated by FAST system. The results were as follows: 1. Seam strength decreased with the increase of stitch length. The loop strength of sewing thread and the type of base fabric than the type of coated surface had an effect on seam strength. 2. Seam elongation also decreased with the increase of stitch length and was affected by the type of base fabric. The tensile elongation of polyurethans coated fabric had an effect on seam elongation. 3. Sean efficiency also was related to stitch length, the type of base fabric, and seam strength. The suitable seam efficiency was within 50%∼65% in which polyurethane coated fabric and sewing thread broke at the same time. Therefore PS thin and PPC thin sewing threads and 3mm stitch length were suitable to polyurethane coated fabrics. 4. The relaxation shrinkage(RS) of polyurethane coated fabric was smaller than the smallest value of control chart in FAST system. And the extensibility(E) and the shear rigidity(G) were larger than the largest value.

  • PDF

전도성사의 심 퍼커와 봉합강도 평가 (Evaluation of Seam Puckering and Seam Strength for Conductive Threads)

  • 이효정;박선희;이예진
    • 한국의류학회지
    • /
    • 제45권1호
    • /
    • pp.46-55
    • /
    • 2021
  • Seam puckering and the seam strength of conductive threads used to produce smart clothing were analyzed according to stitching methods and fabrics. Samples were prepared in a lock stitch and zigzag stitch on plain woven and jersey knit fabric, using one type of polyester sewing thread and three types of commercial conductive threads that consisted of two types of stainless-steel conductive threads (TST and MST) and one type of silver conductive thread (SSV). Seam pucker percentages, shapes, and seam strength were measured. On plain woven fabric as well as jersey knit fabric, three-ply TST and MST showed a higher SP percentage compared to a polyester sewing thread. Meanwhile, single-ply SSV showed the lowest SP percentage. In addition, the SP percentage of the zigzag stitch decreased along the weft and course directions of the fabric, and decreased significantly as the number of fabric layers increased. Moreover, there was a marked tendency for a higher SP percentage in jersey knit fabric compared to plain woven fabric, and the two-dimensional cross-section waveforms of stitches obtained using three-dimensional data that showed increased irregular waveforms and peaks in the zigzag stitch. There were no correlations between seam strength and tensile strength.

소매산 높이에 따른 소매달림선 하부곡선상의 봉제조건에 관한 연구 (A study on the Sewing Condition of the Lower part of the Armhole Seam by Cap Heights)

  • 이명희
    • 한국의류산업학회지
    • /
    • 제4권3호
    • /
    • pp.229-234
    • /
    • 2002
  • An investigation was made of the angle of bias on the lower part of the armhole line of the back bodice and that on the lower part of the sleeve cap curve line by cap heights, and then it was made of the lock stitch seam strength and elongation on the matching angles, the stitch density (26 stitches/3cm, 19 stitches/3cm, 14 stitches/3cm, and the samples (a cotton fabric and two kinds of cotton mixed polyester fabric). The matching angles of the machine-sewed samples are $30^{\circ}/-30^{\circ}$, $30^{\circ}/-45^{\circ}$, $45^{\circ}/-45^{\circ}$ and $60^{\circ}/-60^{\circ}$ by the analysis of the angles of bias on the lower part of the armhole seam. In view of the results of the seam strength and elongation, the reasonable sewing condition of the lower part of the armhole seam was 19 stitches/3cm.

폴리에스테르/면 혼방직물의 봉제시 봉합강도에 관한 연구 (A Study on Seam Strength of Palyester/Cotton brended Fabrics in the Sewing)

  • 박채련;김순분
    • 한국의류산업학회지
    • /
    • 제2권3호
    • /
    • pp.234-238
    • /
    • 2000
  • In this study it was measured seam strength of T/C which has the different processing methods and density. Also it was measured seam strength by the change of angle in the pattern and the kinds of threads. The results of this study are as follows; The seam strength is stronger in order of $90^{\circ}/90^{\circ}$ > $0^{\circ}/0^{\circ}$ > $70^{\circ}/-70^{\circ}$ > $70^{\circ}/70^{\circ}$ > $60^{\circ}/60^{\circ}$ > $60^{\circ}/-60^{\circ}$ > $30^{\circ}/30^{\circ}$ > $30^{\circ}/-30^{\circ}$ > $45^{\circ}/-45^{\circ}$ > $45^{\circ}/45^{\circ}$ by the cutting directions, in order of T/C3>T/C1>T/C4>T/C2 by the samples and in order of 60's/3>40's/2>60's/2>50's/2 by the threads.

  • PDF