• 제목/요약/키워드: seam line

검색결과 168건 처리시간 0.033초

용접선 추적 비전장치를 이용한 원형-사각 파이프의 T형 조인트 레이저용접 (T-joint Laser Welding of Circular and Square Pipes Using the Vision Tracking System)

  • 손영일;박기영;이경돈
    • 한국레이저가공학회지
    • /
    • 제12권1호
    • /
    • pp.19-24
    • /
    • 2009
  • Because of its fast and precise welding performance, laser welding is becoming a new excellent welding method. However, the precise focusing and robust seam tracking are required to apply laser welding to the practical fields. In order to laser weld a type of T joint like a circular pipe on a square pipe, which could be met in the three dimensional structure such as an aluminum space frame, a visual sensor system was developed for automation of focusing and seam tracking. The developed sensor system consists of a digital CCD camera, a structured laser, and a vision processor. It is moved and positioned by a 2-axis motorized stage, which is attached to a 6 axis robot manipulator with a laser welding head. After stripe-type structured laser illuminates a target surface, images are captured through the digital CCD camera. From the image, seam error and defocusing error are calculated using image processing algorithms which includes efficient techniques handling continuously changed image patterns. These errors are corrected by the stage off-line during welding or teaching. Laser welding of a circular pipe on a square pipe was successful with the vision tracking system by reducing the path positioning and de focusing errors due to the robot teaching or a geometrical variation of specimens and jig holding.

  • PDF

수평필릿용접에서 용접결함을 고려한 용접선 자동추적 알고리즘개발에 관한 연구 (A Study on Development of Algorithm for Seam Tracking by Considering Weld Defects in Horizontal Fillet Welding)

  • 문형순;나석주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1996년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.139-141
    • /
    • 1996
  • Among various welding parameters, the welding current which is inversely proportional to the tip-to-workpiece distance in GMAW is an essential parameter to monitor the GMAW process of horizontal fillet joints. For the case of weld defect such as overlap in horizontal fillet welding, therefore, the signal processing for process monitoring or automatic seam tracking should be modified by considering the weld pool surface geometry including the corresponding weld defect. In other words, the adequate signal processing algorithm is indispensible to improve the performance of the arc sensor. However, arc sensor algorithm already developed usually focus on weld seam tracing but do not considering the weld qualities. In this paper, various experiments were carried out to investigate the tendencies of the weld defects when weaving motion is added, and the experimental method based on 2$^n$ factorial design was proposed for deriving the mathematical model between the leg length and the various welding conditions. Moreover, a signal processing method based on the artificial neural network(Adaptive Resonance Theory) was proposed far discriminating the current signal of sound weld beads from that of weld beads with overlap. Finally, the algorithm for weld seam tracking combined with the mathematical modeling and the signal processing method was carried out to track the weld line in conjunction with the improvement of the weld qualities. The reliability of the proposed algorithms were evaluated through various experiments, which showed that the proposed algorithms could be effectively used for arc welding automation.

  • PDF

지역난방 열수송관 국부 부식 파손 분석 (Failure Analysis on Localized Corrosion of Heat Transport Pipe in District Heating System)

  • 김유섭;채호병;김우철;정준철;김희산;김정구;이수열
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.122-130
    • /
    • 2020
  • In this study, a corrosion failure analysis of a heat transport pipe was conducted, as the result of a pinhole leak. Interestingly, the corrosion damage occurred externally in the pipeline, resulting in severe thickness reduction near the seam line. Also, while a stable magnetite protective film formed on the inner surface, the manganese oxide formation occurred only on the outer surface. The interior and exterior of the pipe were composed of ferrite and pearlite. The large manganese sulfide and alumina inclusions were found near the seam line. In addition, the manganese sulfide inclusions resulted in grooving corrosion, which progressed in the seam line leading to the reduction in the thickness, followed by the exposure of the alumina in the matrix to the outer surface. To note, the corrosion was accelerated by pits generated from the boundaries separating the inclusions from the matrix, which resulted in pinhole leaks and water loss.

격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어 (Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam)

  • 이근유;서진호;오명석;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구 (A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

컨테이너 제작을 위한 용접선 추적에 관한 연구 (A Study on the Seam tracking for container box manufacture)

  • 표종우;안병원;엄한성;남택근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.195-199
    • /
    • 2005
  • 현재 조선 산업의 대형 블록제작 용접공정에서 용접용 캐리지(Carriage)를 이용한 반자동 용접 방법이 많이 사용되고 있다. 여기서의 캐리지는 수평 필렛 용접에서 용접 토치를 이송해 주는 장치이지만, 로봇 용접방법처럼 용접선을 추적하는 기능이 없어 곡선용접에는 사용이 불가능하며, 단순히 직선용접에만 사용할 수 있다. 또, 용접선을 추적하는 기능이 없기 때문에 직선용접에서도 용접오류가 자주 발생하여 이를 수정하는데 많은 시간과 비용이 소요되고 있다. 이에 본 논문에서는 현재 사용하고 있는 캐리지에 스트레인 게이지를 이용한 용접선 추적 센서와 80C196KC 마이크로컨트롤러를 추가 설치하여 직선 및 곡선용접에서 용접선을 자동으로 추적할 수 있는 시스템을 개발하여 사선 모형 및 컨테이너 박스 모형 용접선을 제작하여 추적현상에 대해 고찰하여 보았다.

  • PDF

갭과 단차의 기능 및 심미적 품질을 고려한 냉장고 도어 시스템의 공차해석 및 설계 (Tolerance Analysis and Design of Refrigerator Door System for Functional and Aesthetic Quality of Gap and Flush)

  • 김진수;김재성;임현준
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.59-66
    • /
    • 2014
  • The central seam, the vertical 'line' between doors, in the front view of a refrigerator must have its gap and flush within certain ranges to meet functional and aesthetic requirements. The conventional criteria for gap and flush control in the industry are to keep the gap and flush within certain ranges at each of various points along the seam. For aesthetics, however, the uniformity of the gap is also as important because a 'tapered' seam is negatively perceived by human eyes. This paper shows a case study of tolerance design for a refrigerator door system. It presents a step-by-step procedure, which consists of datum flow chain analysis, identification of assembly features, computer modeling of feature tolerances, assembly operations and measurements, tolerance simulation, and tolerance adjustments based on the simulation results. It is found that extra care may need to be used to satisfy the aesthetical criterion for gap uniformity.

THE DEVELOPMENT OF THE NARROW GAP MULTI-PASS WELDING SYSTEM USING LASER VISION SYSTEM

  • Park, Hee-Chang;Park, Young-Jo;Song, Keun-Ho;Lee, Jae-Woong;Jung, Yung-Hwa;Luc Didier
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.706-713
    • /
    • 2002
  • In the multi-pass welding of pressure vessels or ships, the mechanical touch sensor system is generally used together with a manipulator to measure the gap and depth of the narrow gap to perform seam tracking. Unfortunately, such mechanical touch sensors may commit measuring errors caused by the eterioration of the measuring device. An automation system of narrow gap multi-pass welding using a laser vision system which can track the seam line of narrow gap and which can control welding power has been developed. The joint profile of the narrow gap, with 250mm depth and 28mm width, can be captured by laser vision camera. The image is then processed for defining tracking positions of the torch during welding. Then, the real-time correction of lateral and vertical position of the torch can be done by the laser vision system. The adaptive control of welding conditions like welding Currents and welding speeds, can also be performed by the laser vision system, which cannot be done by conventional mechanical touch systems. The developed automation system will be adopted to reduce the idle time of welders, which happens frequently in conventional long welding processes, and to improve the reliability of the weld quality as well.

  • PDF