Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.3.122

Failure Analysis on Localized Corrosion of Heat Transport Pipe in District Heating System  

Kim, You Sub (Department of Materials Science and Engineering, Chungnam National University)
Chae, Hobyung (Department of Materials Science and Engineering, Chungnam National University)
Kim, Woo Cheol (R & D Institute, Korea District Heating Corp.)
Jeong, Joon Cheol (R & D Institute, Korea District Heating Corp.)
Kim, Heesan (Department of Materials Science and Engineering, Hongik University)
Kim, Jung-Gu (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Lee, Soo Yeol (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Corrosion Science and Technology / v.19, no.3, 2020 , pp. 122-130 More about this Journal
Abstract
In this study, a corrosion failure analysis of a heat transport pipe was conducted, as the result of a pinhole leak. Interestingly, the corrosion damage occurred externally in the pipeline, resulting in severe thickness reduction near the seam line. Also, while a stable magnetite protective film formed on the inner surface, the manganese oxide formation occurred only on the outer surface. The interior and exterior of the pipe were composed of ferrite and pearlite. The large manganese sulfide and alumina inclusions were found near the seam line. In addition, the manganese sulfide inclusions resulted in grooving corrosion, which progressed in the seam line leading to the reduction in the thickness, followed by the exposure of the alumina in the matrix to the outer surface. To note, the corrosion was accelerated by pits generated from the boundaries separating the inclusions from the matrix, which resulted in pinhole leaks and water loss.
Keywords
District heating; Heat transport pipe; Localized corrosion; Inclusion;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 M. Hong, J. Cho, M. J. Song, W. C. Kim, T. B. Ha, and S. Y. Lee, Corros. Sci. Tech., 17, 287 (2018). https://doi.org/10.14773/cst.2018.17.6.287
2 Y. Kim, H. Chae, M. Hong, M. J. Song, J. Cho, W. C. Kim, T. B. Ha, and S. Y. Lee, Corros. Sci. Tech., 18, 55 (2019). https://doi.org/10.14773/cst.2019.18.2.55
3 M. Hong, H. Chae, Y. Kim, M. J. Song, J. M. Cho, W. C. Kim, T. B. Ha, and S. Y. Lee, Korean J. Mater. Res., 29, 11 (2019). https://doi.org/10.3740/MRSK.2019.29.1.11   DOI
4 R. Ebara, F. Tanaka, and M. Kawasaki, Eng. Failur. Analy., 33, 29 (2013). https://doi.org/10.1016/j.engfailanal.2013.04.007   DOI
5 M. Hong, H. Chae, W. C. Kim, J. G. Kim, H. Kim, and S. Y. Lee, Met. Mater. Int., 25, 1191 (2019). https://doi.org/10.1007/s12540-019-00267-6   DOI
6 Y. S. Chang, S. W. Jung, S. M. Lee, J. B. Choi, and Y. J. Kim, Appl. Therm. Eng., 27, 2524 (2007). https://doi.org/10.1016/j.applthermaleng.2007.02.001   DOI
7 H. Lund, B. Moller, B. V. Mathiesen, and A. Dyrelund, Energy, 35, 1381 (2010). https://doi.org/10.1016/j.energy.2009.11.023   DOI
8 P. A. Ostergaard and H. Lund, Appl. Energ., 88, 479 (2011). https://doi.org/10.1016/j.apenergy.2010.03.018   DOI
9 H. Gadd and S. Werner, Appl. Energ., 106, 47 (2013). https://doi.org/10.1016/j.apenergy.2013.01.030   DOI
10 D. Connolly, H. Lund, B. V. Mathiesen, S. Werner, B. Moller, U. Persson, T. Boermans, D. Trier, P. A. Ostergaard, and S. Nielsen, Energ. Policy, 65, 475 (2014). https://doi.org/10.1016/j.enpol.2013.10.035   DOI
11 KS D 3562, Carbon Steel Pipes for Pressure Service (2019).
12 H. Chae, H. Wang, M. Hong, W. C. Kim, J. G. Kim, H. Kim, and S. Y. Lee, Met. Mater. Int., 26, 989 (2020). https://doi.org/10.1007/s12540-019-00386-0   DOI
13 C. Kato, Y. Otoguro, S. Kado, and Y. Hisamatsu, Corros. Sci., 18, 61 (1978). https://doi.org/10.1016/S0010-938X(78)80076-6   DOI
14 S. J. Luo and R. Wang, Corros. Sci., 87, 517 (2014). https://doi.org/10.1016/j.corsci.2014.06.044   DOI
15 B. Kim, S. Kim, and H. Kim, Adv. Mater. Sci. Eng., 2018, 13, Article ID 7638274 (2018). https://doi.org/10.1155/2018/7638274
16 R. M. Cornell, Clay Minerals, 23, 329 (1988). https://doi.org/10.1180/claymin.1988.023.3.10   DOI
17 R. M. Cornell and R. Giovanoli, Polyhedron, 7, 385 (1988). https://doi.org/10.1016/S0277-5387(00)80487-8   DOI
18 Z. Bi, R. Wang, and X. Jing, Corros. Sci., 57, 67 (2012). https://doi.org/10.1016/j.corsci.2011.12.033   DOI
19 P. C. Chung, Y. Ham, S. Kim, J. Lim, and C. Lee, Mater. Des., 34, 685 (2012). https://doi.org/10.1016/j.matdes.2011.05.027   DOI
20 M. Rahman, S. P. Murugan, C. Ji, Y. J. Cho, J. -Y. Cheon, and Y. -D. Park, Corros. Sci. Tech., 17, 109 (2018). https://doi.org/10.14773/cst.2018.17.3.109   DOI
21 Q. Meng, G.S. Frankel, H. O. Colijn, and S. H. Goss, Nature, 424, 389 (2003). https://doi.org/10.1038/424389b
22 K. Oikawa, H. Ohtani, K. Ishida, and T. Nishizawa, ISIJ Int., 35, 402 (1995). https://doi.org/10.2355/isijinternational.35.402   DOI
23 C. Liu, R. I. Revilla, D. Zhang, Z. Liu, A. Lutz, F. Zhang, T. Zhao, H. Ma, X. Li, and H. Terryn, Corros. Sci., 138, 96 (2018). https://doi.org/10.1016/j.corsci.2018.04.007   DOI
24 Q. Liu, S. Yang, M. Zhao, L. Zhu, and J. Li, Metals, 7, 347 (2017). https://doi.org/10.3390/met7090347   DOI
25 C. Liu, X. Cheng, Z. Dai, R. Liu, Z. Li, L. Cui, M. Chen, and L. Ke, Materials, 11, 2277 (2018). https://doi.org/10.3390/ma11112277   DOI