• Title/Summary/Keyword: sealing element

Search Result 139, Processing Time 0.022 seconds

A Study on the Design of Transmission Oil-Seal Using 2D Finite Element Analysis (2D 유한요소해석을 이용한 트랜스미션 오일 씰 설계에 관한 연구)

  • Yoon, Hyun-cheol;Jeon, Gi Hyun;Choi, Ju Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-93
    • /
    • 2019
  • Oil seals are most essential parts in mechanical lubrication system to maintain the close gaps between stationary and high rotating components, and to help prevent oil leakages. Oil seals also can prevent harmful contaminants entering from outside to machinery, especially in severe environments. Therefore, the oil seals have an important performance in the machinery components. The performance of the oil seals are influenced by the design variables such as amount of interference gap between the main lip and shaft, the angle of main lip at air and oil sides and the distance between the garter spring and main lip. In the present study, a finite element analysis was performed to evaluate the oil seal performance with the considerations of number of oil seal dust lips and angle of the lip at oil side with the different design variables. As a result from the FEM analysis, the stress and contact pressure distributions was derived, based on this, performance of the sealing and durability were determined.

A Study on the Development of Ship's Stern Tube Sealing System(I) -Based on Lip Seals- (선미관 밀봉장치 개발에 관한 연구 (I) - 맆 시일을 중심으로-)

  • 김영식;전효중;왕지석;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.29-45
    • /
    • 1991
  • Lip type stern tube sealing systems have used in almost all the middle or large ships which are being constructed in these days. It seems that the pressure fluctuation of the seal ring interspace, the cross-section profile and the materials quality of the seal rings have great effects on the sealing fuction of this sealing system. In this paper, the mechanical movement of lip seal ring which plays the most important role in stern tube sealing system and the possibility of leakage caused by pressure fluctuation are studied by theory and experiment. Using the finite element method for the axi-symetric object which receives the torsional load, the displacement and stress analysis of the seal rings, and also the possibility of crack occurance is checked by theoretical analysis. If the force which seal ring lip periphery receives is too small, there will be the possibility of leakage caused by the pressure fluctuation of the seal ring interspace, and if this force is too large, the frictional force between the seal ring and the liner will become problematical. The possibility of leakage caused by hardening of seal ring materials and creep phenomena of tested seal rings are also examined. The trial seal rings were designed and manufactured using the program of displacement and stress analysis developed in this study and the experimental apparatus to test the trial seal rings was also designed and manufactured. This trial seal rings were fitted in the experimental apparatus which was made in the same form as an actual stern tube. The one side of this apparatus was filled with sea water and the other side of it was filled with the lubricating oil. The leakage of oil and sea water was checked and the temperature was measured, rotating the propeller shaft at the constant velocity by D.C. motor. It was proved that the trial seal rings made in Viton rubber functioned excellenty but the trial seal rings made in N.B.R. rubber had problem in its durability.

  • PDF

A Study on Application of Improved Tunnel Water-Sealing Grouting Construction Process and the Inverse Analysis Material Selection Method Using the Injection Processing Results (개선된 터널 차수그라우팅 시공 프로세스 적용 및 그 주입시공결과를 이용한 역해석 재료선정방법 연구)

  • Kim, Jin Chun;Yoo, Byung Sun;Kang, Hee Jin;Choi, Gi Sung;Kim, Seok Hyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.101-113
    • /
    • 2022
  • This study is planned with the aim of developing a systematic construction process based on the scientific and engineering theory of the water-sealing grouting construction applied to the tunnel excavation process during the construction of the downtown underground traffic network, so that the construction quality of the relatively backward domestic tunnel water-sealing grouting construction is improved and continuously maintained no matter who constructs it. The main contents of the improved tunnel water-sealing grouting can be largely examined in the classification of tunnel water-sealing grouting application and the definition of grouting materials, the correlation analysis of groundwater pressure conditions with groundwater inflow, the study of the characteristic factors of bedrock, and the element technologies and injection management techniques required for grouting construction. Looking at the trends in global research, research in the field of theoretical-based science and engineering grouting is actively progressing in Nordic countries (Sweden, Finland, Norway, etc.), Japan, Germany, and the United States. Therefore, in this study, the algorithm is established through theoretical analysis of the elements of tunnel water-sealing grouting construction techniques to provide an integrated solution including a construction process that can effectively construct tunnel water-sealing grouting construction.

Sliding Contact Analysis between Chromium Plated Hydraulic Cylinder Rod and Seals (크롬 도금한 유압 실린더 로드와 시일 사이의 미끄럼접촉 해석)

  • Park, Tae Jo;Kim, Min Gyu
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.10-15
    • /
    • 2018
  • The hydraulic cylinder seals are used not only to protect leakage of the working fluids but also to prevent incoming of foreign particles into the system. Chromium plating is generally applied to improve corrosion and wear resistance. It has been noticed that sealing surface damage occurs due to the hard foreign/wear particles contained in the hydraulic oil. In this study, a three-bodied sliding contact problem related with a PTFE seal, a spherical particle and chrome-plated steel substrate is modeled to investigate the relations to wear mechanism. Using the nonlinear finite element software, MARC/MENTAT, the deformed shapes, the von Mises and first principal stress distributions with plating thickness were compared. The sealing surface was mainly abraded by hard particles embedded in the seal. The plastic deformation of the steel substrate decreased with thicker plating. Hence it could be more effective to coat the sealing surface of a hydraulic cylinder with a hard material such as TiN, TiC and DLC.

A Study on Design Sensitivity of Elastomeric O-ring Squeezed and Highly Pressurized Under Laterally One-sided Constrained Condition (단 측벽 구속하에서 압축 및 내압을 받는 고무 오링의 설계 민감도 연구)

  • Park, Sung-Han;Kim, Jae-Hoon;Kim, Won-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.27-34
    • /
    • 2007
  • Static or dynamic elastomeric O-ring seals are installed between joining parts, and play key roles of high pressure-tightening. Sealing performance and structural safety of the O-ring are dependent on groove design, plain diameter, squeeze and applications such as pressure and temperature. In this study, to solve O-ring problem squeezed and highly pressurized under laterally one-sided constrained condition, hyperelastic FE analyses are performed, and FE results are compared with measured ones by computer-aided tomography, deformed shape and extrusion depth of the O-ring. Through the comparisons, FE analysis technique was verified. In order to evaluate design sensitivity, Taguchi method was used to select FE analysis cases. Adjustment parameters are clearance gap, groove comer radius, plain diameter and squeeze. By means of verified FE analysis technique, it has been analysed how the parameters have effects on contact stress fields, internal stress fields, and extrusion depths. Sealing performance has been evaluated based on contact stress fields and contact widths, and structural safety on internal stress and strain, extrusion lengths.

Improving Stability of Motor Generator Set of the Power Supply System for CEDM in Korean Standard Nuclear Power Plants (한국표준형 원전 제어봉구동장치 전원공급계통의 전동발전기 세트 안정성 개선)

  • Choi, Il Young;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • This paper analyzed a root cause of abnormality in the temperature and vibration at generator-side bearing of motor generator set (MG Set), which is a power supply system to control element drive mechanism (CEDM) of nuclear power plants (NPPs), and modified the design of roller-type and sealing method to improve the abnormalities. From the inspection of MG Set and analysis of temperature variation during service, it was found that the abnormal temperature transition was basically associated with original design of generator-side bearing, whose roller was axially restrained by inner race, and that the abnormal vibration level was caused by inserting small chips of cage and V-ring, which were generated due to the abnormal temperature transition at roller bearing. Type of bearing and sealing method were modified based on these analyses. The temperature and vibration level measured at roller bearing showed that the modifications clearly improved the operational stability of MG Set.

Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

  • Kakandikar, Ganesh M.;Nandedkar, Vilas M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.

Effects of the Bead Shape on the Nonlinear Behavior of Cylinder Head Gasket (비드 형상에 따른 실린더 헤드 가스켓의 비선형 거동 특성)

  • Byun, Chul-Jin;Yoo, Seung-Hyun;Yoon, Cheon-Han;Park, Jong-Kuk
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.321-325
    • /
    • 2000
  • Gasket of vehicle engine maintains airtight between cylinder head and engine block under high temperature and pressure, and plays important role in heat conduction of engine. And the characterization of the nonlinear behavior of metal gasket fer various bead shapes is very important as basic research for estimation of gasket durability. But it is very difficult to analyze the behavior of gasket In real experiment. In this paper, to analysis effects of the bead shape on the nonlinear behavior of cylinder head gasket under uniform pressure, the virtual experiment using the nonlinear finite element method was performed. Results are analyzed with residual deformation and the sealing pressure. With the increase of the height and the width of bead, the residual deformation and the sealing pressure increase. And if the height is very high and the width is very narrow, the wrinkles are occurred in the gasket while working.

  • PDF

Infinite element for the scaled boundary analysis of initial valued non-homogeneous elastic half space (초기치를 갖는 비동질무한영역의 해석을 위한 비례경계무한요소법)

  • Lee, Gye-Hee;Deeks, Andrew J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.259-264
    • /
    • 2007
  • In this paper, to analyze the initial valued non-homogeneous elastic half space by the scaled boundary analysis, the infinite element approach was introduced. The free surface of the initial valued non-homogeneous elastic half space was mode1ed as a circumferential direction of boundary scaled boundary coordinate. The infinite element was used to represent the infinite length of the free surface. The initial value of material property(elastic modulus) was considered by the combination of the position of the sealing center and the power function of the radial direction. By use of the mapping type infinite element, the consistent e1ements formulation could be available. The performance and the feasibility of proposed approach are examined by two numerical examples.

  • PDF

Design Optimization and Numerical Study of O-ring using Taguchi Method (다구찌법을 이용한 O-링의 최적설계 및 수치적 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.259-265
    • /
    • 2004
  • The sealing performance of O-rings is affected by working conditions such as applied pressure, operation temperature, pre-compressed ratio and material properties. In this paper, a pressurized and compressed elastomeric bi-polymer O-ring in which is inserted into a rectangular groove is analyzed by non-linear MARC finite element program based on the Taguchi experimental method. O-rings with 9 different profile models are analyzed for design parameters that are related to the diameter ratio between outer diameter and inner one of bi-polymer O-ring, compressive ratio, groove angle and groove depth. The calculated FEM results showed that the affection ratio of design parameter dlD, which may control sealing pressure of O-rings, is the most influential parameter among the groove angle, groove depth and compression ratio.