• Title/Summary/Keyword: seabed of shallow

Search Result 46, Processing Time 0.016 seconds

Modeling of the Formation of Long Grooves in the Seabed by Grounded Ice Keels

  • Marchenko, Aleksey
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.1-15
    • /
    • 2003
  • The motion of passively floating body, whose keel can have a contact with seabed soil, is under the consideration. The body simulates ice ridge floating in shallow water. The force of seabed soil reaction applied to the grounded keel is estimated taking into account soil embankment near the grounded keel. Two-dimensional trajectories of body motion, the shape of the grooves in seabed and the height of soil embankment are calculated when the motion of the body is caused by semidiurnal $M_2$ tide. The influence of wave amplitude and bottom slope on the shapes of body trajectory and the grooves are analyzed.

Influence of the Shear Property of Seabed Appearing in the Striation Pattern of the Spectrogram of Ship-radiated Noise Measured in a Shallow Sea (천해에서 측정한 선박 방사소음 스펙트로그램의 줄무늬 패턴에 나타나는 해저면 전단성 영향)

  • Lee, Seong-Wook;Hahn, Joo-Young;Baek, Woon;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • This paper represents the results of interpretation on the cause of sign changing of the striation slopes appearing in the range-frequency domain spectrogram of ship-radiated noise measured in a shallow sea. Striation patterns and dispersion characteristics simulated from a numerical model based on mode theory at various seabed conditions show that the sign changing of the striation slopes appearing in measured signal is caused by the shear property of seabed. more specifically by the shear property of the basement lying below the sediment which is estimated about 3±1m thick.

Motion of a Cylindrical Object due to Seabed Soil Friction (해저면 토양마찰력에 의한 원통형 물체의 운동)

  • 최경식;강신영;곽한우
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.19-28
    • /
    • 1992
  • The motion of a cylindrical object resting on shallow seabed due to wave forces and soil friction is studied. Given environmental conditions such as wave characteristics and seabed soil properties, the equations of motion are derived and the corresponding reponses of the cylinder in two dimensional plane, i.e., translational and rotational displacements, accelerations, are calculated. The motion is substantially restrained by the penetration of a cylinder into seabed and the parametric study focuses on finding out a minimum penetration depth which makes the cylinder motionless.

  • PDF

Automatic Mesh Generation Method in Shallow Water Area considering Water Depth (수심을 고려한 천해역에서의 자동요소 생성법)

  • 김남형;양정필;박상길
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.97-105
    • /
    • 2000
  • This paper presents an automatic mesh generation considering water depth, which is based on the depth interpolation. The key feature of this method is that the position of a mesh on any depth in the shallow water area can be generated. The Examples are carried out, and the results are shown to be good. This method is shown to be a useful and powerful tool for the flow calculation for the seabed topography.

  • PDF

Detection of an Object Bottoming at Seabed by the Reflected Signal Modeling (천해에서 해저면 반사파의 모델링을 통한 물체의 탐지)

  • On, Baeksan;Kim, Sunho;Moon, Woosik;Im, Sungbin;Seo, Iksu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.55-65
    • /
    • 2016
  • Detecting an object which is located at seabed is an important issue for various areas. This paper presents an approach to detection of an object that is placed at seabed in the shallow water. A conventional scheme is to employ a side-scan sonar to obtain images of a detection area and to use image processing schemes to recognize an object. Since this approach relies on high frequency signals to get clear images, its detection range becomes shorter and the processing time is getting longer. In this paper, we consider an active sonar system that is repeatedly sending a linear frequency modulated signal of 6~20 kHz in the shallow water of 100m depth. The proposed approach is to model consecutively received reflected signals and to measure their modeling error magnitudes which decide the existence of an object placed on seabed depending on relative magnitude with respect to threshold value. The feature of this approach is to only require an assumption that the seabed consists of an homogeneous sediment, and not to require a prior information on the specific properties of the sediment. We verify the proposed approach in terms of detection probability through computer simulation.

An Analytical Solution of Dynamic Responses for Seabed under Flow and Standing Wave Coexisting Fields (흐름과 완전중복파와의 공존장하에서 해저지반내 동적응답의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung;Kim, Kyu-Han;Jeon, Jong-Hyeok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.118-134
    • /
    • 2015
  • An analytical solution of dynamic responses for seabed in shallow, finite and infinite thicknesses has been developed under flow and standing wave coexisting field at a constant water depth condition. To do this, based on the Biot's consolidation theory, the seabed is assumed as a porous elastic media with the assumptions that pore fluid is compressible and Darcy law governs the flow. The developed analytical solution is compared with the previous results and is verified. Using the analytical solution the deformation, pore pressure, effective and shear stresses of seabed are examined under various given values of flow velocity, incident wave period and seabed thickness. From this study, it is confirmed that the seabed response is quite different depending on consideration of flow, which causes changing period and length of incident and reflection waves.

Variation of Physical Characteristic of Tidal Flat's Environment by Water Level Change (수위변동에 따른 갯벌의 물리적 환경특성의 변화)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • This paper described the results of the characteristics of the near-bottom flow and field analysis of the tidal flats sediment. It was the aim of this paper to grasp current flow of tidal flat's environment and influence factor for environmental change forecast of tidal flats. Field measurement of water velocity, water elevation, bed materials test, and temperature distribution of tidal flat were conducted. Thereafter, current flow, turbidity and temperature distribution of tidal flat sediment have been discussed. The field research results showed that the fluctuating velocity near the seabed before and after its appearance at low tide was strongly affected by the wind wave. The resuspension of the sea-bottom sediment took place with great intensity before and after the appearance of the seabed at low tide. Both the sea water level and the weather condition were a significant influential factors. Such as, temperature and turbidity just on the surface and the shallow layer of seabed sediments were varied largely with time and weather conditions, but that its deeper layers was almost constant. Temperature on the seabed sediments was strongly influenced by irradiance and water depth. The temperature variation of the tidal flat and the variation characteristics of the current flow and turbidity depend greatly on the inhabiting environment of the tidal flat benthic organism.

  • PDF

Analysis of Reflection Coefficients of Waves Propagating over Various Depression of Topography (다양한 함몰지형 위를 통과하는 파랑의 반사율 해석)

  • Kang, Gyu-Young;Jung, Tae-Hwa;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.899-908
    • /
    • 2007
  • In this study, wave reflection due to depression of seabed is calculated by using eigenfunction expansion method. The proper numbers of steps and evanescent modes needed for analysis are suggested by applying the eigenfunction expansion method to bottom topography of which slope or curvature varies. While satisfying shallow or intermediate water depth condition, the optimal figure of depression of seabed is obtained by calculating reflection coefficient for various depressions of seabed. The reflection coefficient with distance between the depression of seabeds is then calculated after arraying the optimal geometry in two and three rows.

Development of Multi-purpose Marine Wastes Cleaning Systems for the Shallow Waters(PART II : System Development and Performance Evaluation) (천수용 다기능 해양폐기물 수거시스템 개발(PART II : 시스템 구성 및 성능시험))

  • Cho Yong-Jin;Moon Il-Sung;Shin Myung-Soo;Yu Jeong-Seok;Kang Chang-Gu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.2
    • /
    • pp.62-67
    • /
    • 2002
  • This paper - following 'Development of multi-purpose marine waste cleaning systems for the shallow waters (Part I : preliminary conceptual design)'- describes on the system development and the sea trial performance evaluation(Cho[2003]). The multi-functional seabed waste collecting system and the towing hook system were developed. The maximum working depth of these systems are 15 and 100 meters, respectively(MOMAF[2001]). For the multi-purpose use to collect the marine waste, this system contains floating waste collecting device for the waste on seawater and remained waste collecting device for the waste on seabed, while steel wire cutting system is added for higher efficiency In order to evaluate the system performance, the prototype of multi-functional system was constructed and the sea trial test at shallow water were carried out. As a result, this system operated well with safe and without any interaction so that the developed systems are practicable and applicable.

  • PDF

An Analytical Solution of Dynamic Responses for Seabed under Coexisting Fields of Flow and Partial Standing Wave with Arbitrary Reflection Ratio (흐름과 임의반사율을 갖는 부분중복파와의 공존장하에서 해저지반내 동적응답의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kang, Gi-Chun;Kim, Do-Sam;Kim, Tae-Hyung;Na, Seung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.27-44
    • /
    • 2015
  • An analytical solution of dynamic responses for seabed in finite and infinite thicknesses including shallow has been developed under flow and partial standing wave with arbitrary reflection ration coexisting field at a constant water depth condition. In the analytical solution, a field was simply transited to a coexisting field of progressive wave and flow when reflection ratio was 0 and to a coexisting field of fully standing wave and flow when reflection ratio was 1. Based on the Biot's consolidation theory, the seabed was assumed as a porous elastic media with the assumptions that pore fluid is compressible and Darcy law governs the flow. The developed analytical solution was compared with the existing results and was verified. Using the analytical solution the deformation, pore pressure, effective and shear stresses were examined under various given values of reflection ratio, flow velocity, incident wave's period and seabed thickness. From this study, it was confirmed that the dynamic response of seabed was quite different depending on consideration of flow, which causes changing period and length of incident and reflection waves. It was also confirmed that dynamic response significantly depends on the magnitude of reflection ratio.