• Title/Summary/Keyword: seabed

Search Result 591, Processing Time 0.027 seconds

Feasibility of seed bank for restoration of salt marsh: a case study around the Gwangyang Bay, southern Korea

  • Lee, Seon-Mi;Cho, Yong-Chan;Lee, Chang-Seok
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.123-129
    • /
    • 2012
  • Salt marsh is an important transitional zone among terrestrial, riverine, and marine ecosystems and is a productive habitat that interacts extensively with adjacent landscape elements of estuarine and coastal ecosystems. Nowadays, in addition to various human activities, a variety of natural processes induce changes in salt marshes. This study aims to provide background information to restore disturbed salt marshes and to propose their ecological restoration using seed banks. The study area is a prepared area for the Gwangyang Container Port located in the southern Korea. This area was formed by accumulating mud soils dredged from the bottom of the forward sea. This land was created in a serial process of preparing the Gwangyang container port and the salt marsh was passively restored by seeds buried in mud soil dredged from seabed. As a result of stand ordination based on vegetation data collected from the land, stands were arranged according to tolerance to salinity in the order of $Suaeda$ $maritima$, $Salicornia$ $europaea$, and $Phragmites$ $communis$ communities on the Axis 1. Landscape structure of the projected area was analyzed as well. Edges of the projected area were divided from the marginal waterway by the dike. Four types of vegetation appeared on the dike: $Alnus$ $firma$ plantation, $Robinia$ $pseudoacacia$ plantation, $Lespedeza$ $cyrtobotrya$ plantation, and grassland. In the more internal areas, two types of vegetation sequences appeared: $Aster$ $tripolium$ community-$Suaeda$ $glauca$ community-$Salicornia$ $europaea$ community sequence and $Aster$ $tripolium$ community-$Suaeda$ $maritima$ community-$S.$ $europaea$ community sequence. Mixed community showed the highest species diversity (H' = 0.86) and $S.$ $europaea$ community showed the lowest (H' = 0.0). Evenness is the highest in Mixed community (J' = 2.26) and the lowest in $S.$ $maritime-S.$ $europaea$ community (J' = 0.0). Several plant communities were successfully established on the land created by mud soil dredged from the bottom of Gwangyang Bay. Moreover, community diversity in this area approached a similar level with those from other studies involving natural salt marshes. Therefore, restoration effect based on community diversity obtained in our study can be evaluated as a successful achievement. In this respect, although most salt marshes in Korea and other places worldwide have been destroyed or disturbed by excessive land use, feasibility of seed bank as a restoration tool is greatly expected.

A Study on the Selection of Target Ship for the Protection of Submarine Power Cable (해저 동력케이블 보호를 위한 대상 선박 선정에 관한 연구)

  • Lee, Yun-sok;Kim, Seungyeon;Yu, Yungung;Yun, Gwi-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.662-669
    • /
    • 2018
  • Recently, the installation of submarine power cables is under consideration due to the increase of electric power usage and the development of the offshore wind farm in island areas, including Jeju. In order to protect power cables installed on the seabed, it is necessary to calculate the burial depth based on the characteristics of anchoring, dragging and fishing, etc. However, there is no design standard related to the size of target ships to protect the cables in Korea. In this study, we analyzed the design standards for the protection of domestic submarine pipelines similar to submarine cables, and developed the risk matrix based on the classification by emergency anchoring considering the installation environment, then designed the size of target ships according to the cumulative function scale by ship size sailing through the sea concerned. Also, we linked marine accident conditions, such as anchoring, dragging, etc. and the environmental conditions such as current, sea-area depth of installation etc. to the criteria of the protection of submarine cable, and examined the size of specific target ships by dividing the operating environment of ships into harbor, coastal and short sea. To confirm the adequacy and availability of the size of target ships, we verified this result by applying to No. 3 submarine power cables, which is to be installed in the section from Wando to Jeju Island. This result is expected to influence in the development of a protection system for submarine cables and pipelines as well as the selection of anchor weight according to the determination of burial depth.

The Whereabout of the Bell Imperial-Dragon-Temple (皇龍寺 49萬소斤 巨鐘은 어디로)

  • Lee, Byung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 1997
  • Recently, the search for the whereabout of the huge Bell Imperial-Dragon-Temple becomes a great issue. If it happens to be found out and ringing at the original location of the Bell in Kyungjoo City, the Bell might be a great national treasure and lasting to the eternity with her beautiful sound. The Bell was so huge that the total weight of the raw material put into crucibles was 497,581 Kun (289 tons), the shoulder weight 10.3 Chuk (3.14 m) and the maximum thickness 9 Chon (27.4 cm). The Bell was erected in 754 in Shilla Dynasty and was assumed to be lost during the war time by the 3rd invasion of Mongolians (1235~8). However, the author found out that the huge Bell was recast into a new small Bell (8.1 ton) in 1103 by the people of Koryu Dynasty and then the new small Bell was hung in the same position as in the original huge Bell. 135 years later, the new small Bell was carried out by Mongolian forces as a spoil of war from Kyungjoo to the Bay Tonghaegoo, through the saddle point of Mountain Toham, Yangbuk and Riber Great Bell. At the bay, Mongolian forces wished to bring back the Bell to Mongolia by a ship, but they dropped the Bell into the sea by accident. So, if this was the case, the bell at the seabed may be the new small bell (7.4 ton) but not the original huge Bell (41.0 ton) For the evaluation of missing data of the two bells, the author sets up two equations relating all the dimensions and their weights, which seems to be a useful guide to the design of bells. The results of the evaluation of the Bells are as follows. The huge Bell The new small Bell Weight 41.0 ton 7.4 ton Shoulder ht. 3.14 m 2.07 m Mouth diameter 2.468 m 1.546 m Max. thickness 27.4 cm (9 Chon) 11.9 cm (3.9 Chon)

  • PDF

Structure & Installation Engineering for Offshore Jack-up Rigs

  • Park, Joo-Shin;Ha, Yeong-Su;Jang, Ki-Bok;Radha, Radha
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • Jack-up drilling rigs are widely used in offshore oil and gas exploration industry. It is originally designed for use in the shallow waters less than 60m of water depth; there is growing demand for their use in deeper water depth over 150m and harsher environmental conditions. In this study, global in-place analysis of jack-up rig leg for North-sea oil well is performed through numerical analysis. Firstly, environmental conditions and seabed characteristics at the North-sea are collected and investigated measurements from survey report. Based on these data, design specifications are established and the overall basic design is performed. Dynamic characteristics of the jack-up rig for North-sea are considered in the global in-place analysis both leg and hull and the basic stability against overturning moment is also analyzed. The structural integrity of the jack-up rig leg/hull is verified through the code checks and the adequate safety margin is observed. The uncertainty in jack-up behaviour is greatly influenced by the uncertainties in the soil characteristics that determine the resistance of the foundation to the forces imposed by the jack-up structure. Among the risks above mentioned, the punch-through during pre-loading is the most frequently encountered foundation problem for jack-up rigs. The objective of this paper is to clarify the detailed structure and installation engineering matters for prove the structural safety of jack-up rigs during operation. With this intention the following items are addressed; - Characteristics of structural behavior considering soil effect against environmental loads - Modes of failure and related pre-loading procedure and parameters - Typical results of structural engineering and verification by actual measurement.

  • PDF

Processing of Side Scan Sonar and SBP Data for the Artificial Reef Area (인공어초지역에 대한 사이드스캔소나와 SBP 탐사 자료처리)

  • Shin, Sung-Ryul;Lim, Min-Hyuk;Jang, Won-Il;Lim, Jong-Se;Yoon, Ji-Ho;Lee, Seong-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.192-198
    • /
    • 2009
  • Side scan sonar and SBP (sub-bottom profiler) play a very important role in the survey for seafloor imaging and sub-bottom profiling. In this study, we have acquired side scan sonar and SBP data from the artificial reef area. We applied digital image processing techniques to side scan sonar data in order to improve an image quality. For the enhancement of data quality and image resolution, we applied the typical seismic data processing sequence including gain recovery, muting, spectrum analysis, predictive deconvolution, migration to SBP data. We could easily estimate if artificial reef structures were settled properly and their distribution on the seafloor from the integrated interpretation of side scan sonar and SBP data. From the sampling analysis of seabed sediments, texture filtering of side scan sonar data and SBP data interpretation, we could evaluate the sediment type, distribution and thickness of seafloor sediments in detail.

A Nuclide Transfer Model for Barriers of the Seabed Repository Using Response Function (응답함수를 이용한 해저처분장의 방벽에 대한 핵종전달 모델)

  • Lee, Youn-Myoung;Kang, Chul-Hyung;Hahn, Pil-Soo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.175-184
    • /
    • 1996
  • A nuclide transfer by utilizing mass transfer coefficient and barrier response function defined for each barrier is proposed, by which the final nuclide transfer rate into the sea water can be evaluated. When simple and immediate quantification of the nuclide release is necessary in the conservative aspect, using this kind of approach may be advantageous since each layered barrier can be treated separately from other media in series in the repository system, making it possible to apply separate solutions in succession to other various media. Although one disadvantage is that while flux continuity can be maintained at the interface by using the exit nuclide flux from the first medium as the source flux for the next one, there may be no guarantee for concentration continuity, this problem could be eliminated assuming that there is no boundary resistance to mass transfer across the interface. Mass transfer coefficient can be determined by the assumption that the nuclide concentration gradient at the interface between adjacent barriers remains constant and barrier response function is obtained from an analytical expression for nuclide flow rate out of each barrier in response to a unit impulse into the barrier multiplied by mass transfer coefficient. Total time-dependent nuclide transfer rate from the barrier can then be obtained by convoluting the response function for the barrier with a previously calculated set of time-varying input of nuclide flow rate for the previous barrier.

  • PDF

Field Installation Test of the Circular Steel Cofferdam Using Suction Pressure (석션압을 이용한 원형강관 가물막이 현장설치 실험)

  • Kim, Jae-Hyun;Xin, Zhen-Hua;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.5-19
    • /
    • 2020
  • With increasing demand for offshore structures, the demand for temporary structures to help the offshore construction work has increased. A cofferdam is a temporary barrier to stop the inflow of water in the construction site and allows working in the dry condition when the construction is done within the water. However, it is a major cause of construction delays and increased costs because additional works are required to block the water inflow. Recently, in order to overcome the limitations of the conventional cofferdam methods and to increase economic efficiency, a large-diameter steel cofferdam method has been proposed which can be installed quickly in the seabed by using the suction pressure. In this circular steel cofferdam method, the top side of the cofferdam including the top-lid is always exposed above the sea level in order to use it as a water barrier, unlike the conventional suction bucket foundation. After installation, the top-lid of the cofferdam is removed and the water filled inside the cofferdam is discharged to make the interior dry condition. In this study, the circular steel cofferdam with a 5 m inner diameter was fabricated and the installation tests were conducted at the Saemaguem test site. During the experiment, variation of suction pressure, leakage between connections, structure deformation, and inclination of the steel cofferdam were measured and post-analyzed. This study verified the new circular steel cofferdam method and confirmed that the suction installation method can be successfully used for various purposes on offshore structures.

Design Load Analysis for Offshore Monopile with Various Estimation Methods of Ground Stiffness (지반강성 산정방법에 따른 해상 모노파일의 설계하중 해석)

  • Jang, Youngeun;Cho, Samdeok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.47-58
    • /
    • 2014
  • This study explores methods for modeling the foundation-seabed interaction needed for the load analysis of an offshore wind energy system. It comprises the comparison study of foundation design load analyses for NREL 5 MW turbine according to various soil-foundation interaction models by conducting the load analysis with GH-Bladed, analysis software for offshore wind energy systems. Furthermore, the results of the aforementioned load analysis were applied to foundation analysis software called L-Pile to conduct a safety review of the foundation cross-section design. Differences in the cross-section of a monopile foundation were observed based on the results of the fixed model, winkler spring and coupled spring models, and the analysis of design load cases, including DLC 1.3, DLC 6.1a, and DLC 6.2a. Consequently, under all design load conditions, the diameter and thickness of the monopile foundation cross-section were found to be 7 m and 80 mm, respectively, using the fixed and coupled spring models; the results of the analysis conducted using the winkler spring model showed that the diameter and thickness of the monopile foundation cross-section were 5 m and 60 mm, respectively. The study found that the soil-foundation interaction modeling method had a significant impact on the load analysis results, which determined the cross-section of a foundation. Based on this study, it is anticipated that designing an offshore wind energy system foundation taking the above impact into account would reduce the possibility of a conservative or unconservative design of the foundation.

A study on the characteristics for temporary ventilation of long subsea tunnels - focused on the current situation and improvement requirements (초장대 해저터널의 공사중 환기 특성에 관한 기초연구 - 현황 및 개선필요사항 중심)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Kim, Jong-Won;Lee, Ju-Kyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.153-166
    • /
    • 2015
  • Long subsea tunnel to be built below the seabed, as compared to the general railway tunnel, is subject to many restrictions in terms of spatial limitation when vertical or inclined shafts are built for the purpose of ventilation and fire safety. So, the construction of some artificial island is required to provide ventilation. But, because of construction difficulty and cost increase, it is necessary to minimize the artificial island construction. The longer ventilation distance is, the more fresh air requirement is needed. When supply airflow becomes excessive, duct size is restricted by the limitations of structure clearance and fan pressure and power increase exponentially. Therefore, in order to build a long subsea tunnel, it is necessary to overcome these practical problems and to develop technical solution that can keep the comfortable condition of tunnel environment during construction. In this study, as on ventilation method development suitable for long subsea tunnel, through comparison of temporary ventilation capacity calculation methods during construction phase, domestic and abroad, the application of Swiss SIA 196 code is found suitable for long subsea tunnel. And, through experiment on leakage of the duct connector, we confirmed that the leakage ratio per 100 m of domestic duct connection type is between 1.5~3.0%. Based on S-class duct of SIA 196 code, ventilation distance is 10.2 km, So, ventilation distance can be longer if duct connection method is improved. So, we confirmed that the improvement of leakage ratio is key issue in the construction-phase ventilation of long subsea tunnel.

Development of Trigger for Signal Storage Reflecting the Behavior Characteristics of the Free-Fall Cone Penetration Test System (자유낙하식 콘관입시험 시스템의 거동특성을 반영한 신호저장용 트리거 개발)

  • Kang, Hyoun;Shin, Changjoo;Kwon, OSoon;Jang, In Sung;Baek, Seungjae;Seo, Jung-min;Won, Sung Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.16-22
    • /
    • 2020
  • The Korea Institute of Ocean Science & Technology is developing a free-fall cone penetration test system (FFCPT) that can acquire the characteristics of the seabed surface soil. To obtain the data through the FFCPT, a method of storing the signals for the entire time or a method of storing the signal for user-defined time can be considered. For efficient data storage and management, it is advantageous that data be stored by user definition. Therefore, this study analyzed the basic behavior using the signal acquired through a sensor mounted in the FFCPT and developed a trigger method to recognize the start and end of data storage using a depth sensor. The start and endpoints of the fall were determined using the moving average difference of 3 and 0.03 seconds of the depth signal. A real sea-trial test was performed using the FFCPT, and the developed trigger was operated normally.