• Title/Summary/Keyword: sea-salt

Search Result 523, Processing Time 0.032 seconds

Fatty Acid Composition of Salt-Fermented Seafoods in Chonnam Area (전남산 젓갈의 지방산 조성)

  • 박복희;박영희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.4
    • /
    • pp.465-469
    • /
    • 1993
  • This study was designed to investigate fatty acid composition of salt-fermented seafoods in Chonnam area. The seven samples were analyzed for fatty acid composition. The contents of lipid was highest in salt-fer-mented anchovies and followed by salt-fermented small mullets, salt-fermented oysters, salt-fermented sea-arrows and salt-fermented small shrimps. The ratio of fatty acid composition depended on the samples but the major fatty acids were $C_{l6:0}$, $C_{20:5}$, $C_{l6:1}$, $C_{22:6}$, and $C_{l8:1}$ among all samples. The composition of n-3 polyunsaturated fatty acids was highest in salt-fermented sea-arrows (39.11%) and followed by salt-fermented small shrimps, salt-fermented oysters, salt-fermented anchovies and salt-fermented small mullets. In n-3 polyunsaturated fatty acids, $C_{20:5}$ was relatively abundant in salt-fermented oysters (17.71%) and salt-fermented sea-arrows (16.38%), and $C_{22:6}$ in salt-fermented sea-arrows (22.22%) and salt-fermented small shrimps (15.13~21.50%). However, $C_{22:6}$ was very little in salt-fermented small mullets.l mullets.

  • PDF

Characteristics of Seaweed Salts Prepared with Various Seaweeds (해조소금의 성분 특성에 관한 연구)

  • Kim, Dong-Han;Rhim, Jong-Whan;Lee, Sang-Bok
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.62-66
    • /
    • 2003
  • Physicochemical properties and mineral compositions of seaweed salts prepared with various seaweeds and concentrated sea water were determined. Ash content of sea mustard was highest (22.7%) and that of laver the lowest (9.8%). Sea mustard contained high amount of Na, while sea tangle and seaweed fusiforme contained high amounts of K and Ca. When insoluble solids were removed after incineration of dried salt, surface color of the salt whitened more due to increase in salt purity with resulting decreases in pH and oxidation-reduction potential (ORP), pH and ORP of the ashed salt decreased, and K and Ca contents increased, while Mg content decreased. Yield of seaweed salt was the highest in sea mustard, ORP was lowest in sea tangle and seaweed fusiforme, and K and Ca contents increased significantly in sea tangle and seaweed fusiforme salts. As the concentration of sea water increased, yield and purity of the salts increased with decrease in pH and ORP and increase in Ca and Mg contents. Seaweed salt showed the characteristic crystalline structure as viewed by SEM.

Development of for Mineral Salt Manufacturing System using Deep Sea Water (해양 심층수를 이용한 미네랄소금 제염장치 개발)

  • Kim H. J.;Shin P. K.;Moon D. H.;Jung D. H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.183-189
    • /
    • 2004
  • Deep ocean water is located in the sea deeper than 200m. At such depth the solar light does not reach, photosynthesis is not performed and nutrition salt is not consumed. Therefore, campared with surface water, Deep Sea Water contains more nutrition salt, such as nitrogen and phosphor. Moreover, it has the good balance of minerals. This Research is primary attempt for apply deep sea water to food industry. New type of mineral salt manufacturing system was developed and high levels of Ca, K, Mg detected from the salt analysis.

  • PDF

Characteristics of Aerosol Mass Concentration and Chemical Composition of the Yellow and South Sea around the Korean Peninsula Using a Gisang 1 Research Vessel (기상1호에서 관측된 한반도 서해 및 남해상의 에어로졸 질량농도와 화학조성 특성)

  • Cha, Joo Wan;Ko, Hee-Jung;Shin, Beomchel;Lee, Hae-Jung;Kim, Jeong Eun;Ahn, Boyoung;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.357-372
    • /
    • 2016
  • Northeast Asian regions have recently become the main source of anthropogenic and natural aerosols. Measurement of aerosols on the sea in these regions have been rarely conducted since the experimental campaigns such as ACE-ASIA (Asian Pacific Regional Aerosol Characterization Experiment) in 2001. Research vessel observations of aerosol mass and chemical composition were performed on the Yellow and south sea around the Korean peninsula. The ship measurements showed six representative cases such as aerosol event and non-event cases during the study periods. On non-event cases, the anthropogenic chemical and natural soil composition on the Yellow sea were greater than those on the south sea. On aerosol event cases such as haze, haze with dust, and dust, the measured mass concentrations of anthropogenic chemical and element compositions were clearly changed by the events. In particular, methanesulfonate ($MSA^-$, $CH_3SO_3^-$), a main component of natural oceanic aerosol important for sulfur circulation on Earth, was first observed by the vessel in Korea, and its concentration on the Yellow sea was three times that on the south sea during the study period. Sea salt concentration important to chemical composition on the sea is related to wind speed. Coefficients of determination ($R^2$) between wind speed and sea salt concentration were 0.68 in $PM_{10}$ and 0.82 in $PM_{2.5}$. Maximum wave height was not found to be correlated to the sea salt concentration. When sea-salt comes into contact with pollutants, the total sea-salt mass is reduced, i.e., a loss of $Cl^-$ concentration from NaCl, the main chemical composing sea salt, is estimated by reaction with $HNO_3$(gas) and $H_2SO_4$(gas). The $Cl^-$ concentration loss by $SO_4^{2-}$ and $NO_3^-$ more easily increased for $PM_{10}$ compared to $PM_{2.5}$. The results of this study will be applied to verifying a dust-haze forecasting model. In addition, continued vessel measurements of aerosol data will become important to research for climate change studies in the future.

Evaluation of Heavy Metal Contents in Mudflat Solar Salt, Salt Water, and Sea Water in the Nationwide Salt Pan (전국 염전에서 생산된 갯벌천일염, 함수 및 해수의 중금속 함량 평가)

  • Kim, Hag-Lyeol;Yoo, Young-Joo;Lee, In-Sun;Ko, Gang-Hee;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.1014-1019
    • /
    • 2012
  • This study was conducted to evaluate the heavy metal contents of mudflat solar salt, salt water, and sea water produced in the nationwide salt pan. In mudflat solar salt, moisture contents were significantly different (p<0.001) between regions, ranging from 7.357% to 14.862%. Arsenic (As) content ranged from 0.007 ppm to 0.497 ppm, cadmium (Cd) from 0.000 ppm to 0.101 ppm, plumbum (Pb) from 0.000 ppm to 0.191 ppm, hydrargyrum (Hg) from 0.006 ppb to 0.180 ppb, and copper (Cu) from 0.039 ppm to 4.794 ppm between regions, which were significantly different (p<0.001). Further, As, Cd, Pb, and Hg contents of sea and salt water were not in excess of their criterion points. Our results suggest that heavy metal contents of mudflat solar salt, salt water, and sea water produced in the nationwide salt pan were at safe levels. However, continuous management of heavy metal contamination, such as PVC met, is still necessary.

Characteristics of Seaweed Salts Prepared with Seaweeds (해조소금의 제조에 관한 연구)

  • Kim, Dong-Han;Lee, Sang-Bok;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.937-942
    • /
    • 2004
  • Physicochemical properties and mineral composition of seaweed salts prepared by incineration and osmotic dehydration methods were determined. As the incineration temperature increased, yield of seaweed salts, insoluble solids, pH, alkalinity, and oxidation-reduction potential (ORP) decreased. Alkalinity of salt prepared with sea tangle was higher than that of sea mustard. ORP decreased by incineration above $700^{\circ}C$, and was lower in salt with sea tangle. As incineration temperature increased, amounts of K and Ca in seaweed salt increased, whereas that of Mg decreased. Potassium and Ca contents of seaweed salt increased remarkably compared with those of common salt. Potassium content of sea tangle salt was higher than that of sea mustard. As incineration time increased, yield of seaweed salts, insoluble solid content, and pH decreased, whereas ORP of the salt increased. Potassium content of seaweed salt with incineration time, while Ca and Na contents decreased after incineration of 8 and 4 hr, respectively. Yield of seaweed salt by osmotic dehydration increased as immersion time in sea water increased. pH of salt from sea mustard was higher than that of sea tangle. ORP of seaweed salt dried three times was -128.8 mV, significantly lower than that of salt prepared by incineration method. As sea water immersion time increased, Mg content of seaweed salt increased significantly, while Ca content decreased. Potassium content of seaweed salt was higher in sea tangle salt. In case of salt prepared by incineration of residuals, pH increased with immersion time but ORP decreased.

Water and Salt Budgets for the Yellow Sea

  • Lee, Jae-Hak;An, Byoung-Woong;Bang, Inkweon;Hong, Gi-Hoon
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.125-133
    • /
    • 2002
  • Water and salt budgets in the Yellow Sea and Bohai are analyzed based on the historical data and CTD data collected recently using box models. The amounts of volume transport and of water exchange across the boundary between the Yellow and East China Seas are estimated to be 2,330-2,840 $\textrm{km}^3$/yr and 109-133 $\textrm{km}^3$/yr, respectively, from the one-layer box model. Corresponding water residence time is 5-6 years. In the Bohai, water residence time is twice as long as that in the Yellow Sea, suggesting that the Yellow Sea and Bohai cannot be considered as a single system in the view of water and salt budgets. The results indicate that water and salt budgets in the Yellow Sea depend almost only on the water exchange between the Yellow and East China Seas. The computation with the coupled two-layer model shows that water residence time is slightly decreased to 4-5 years for the Yellow Sea. In order to reduce uncertainties for the budgeting results the amount of the discharge from the Changjiang that enters into the Yellow Sea, the vertical advection and vertical mixing fluxes across the layer interface have to be quantified. The decreasing trend of the annual Yellow River outflow is likely to result that water residence time is much longer than the current state, especially for the Bohai. The completion of the Three Gorges dam on the Changjiang may be change the water and salt budgets in the Yellow Sea. It is expected that cutting back the discharge from the Changjiang by 10% through the dam would increase water residence time by about 10%.

Effect of Salt Type and Concentration on the Growth of Lactic Acid Bacteria Isolated from Kimchi (소금의 종류와 농도가 배추김치에서 분리한 유산균의 생육에 미치는 영향)

  • Hahn, Young-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.743-747
    • /
    • 2003
  • Tests show that the growth of lactic bacteria in kimchi varies according to the type and concentration of salt used. Weissella confusa, the early stage bacteria in kimchi fermentation, increased sharply after 5 hr of induction with 3% light salt and refined salt. However, the induction period lengthened to 12 hr with 3% sea salt and bamboo salt. Lactobacillus delbrueckii ss lactis and L. pentosus which grow in the middle stage of fermentation, and L. hamsteri, which grows at the end stage of fermentation, were found after 12 hr of induction with 3% salt of all kinds. When 5% light salt was added to the culture medium, the induction period of bacteria other than W. confusa lengthens to 12 hr. The trend is similar for sea salt, bamboo salt, and refined salt, with a higher NaCl concentration resulting in less growth. W. confusa showed salt tolerance, but L. hamsteri was affected by the type and concentration of salt. With 5% sea salt, bamboo salt, and refined salt, the growth of bacteria was inhibited by up to 24 hr.

Effects of Sea Salt on Plant Growth and Moisture: A Case Study on Sweet Basil (Ocimum basilicum L.) (천일염이 식물 성장 및 수분도에 미치는 영향: 스위트 바질(Ocimum basilicum)에 대한 사례 연구)

  • Jung-Suk, Park
    • Journal of Industrial Convergence
    • /
    • v.20 no.11
    • /
    • pp.35-39
    • /
    • 2022
  • The purpose of this study was to investigate the effect of sea salt on the growth and moisture content of sweet basil, soil moisture content, and salt stress. As a research method, sweet basil was treated with sea salt at 0, 5, 50, 100, and 200 mM concentration of sea salt was investigated to determine the growth and stress time of sweet basil. As a result of the study, it was confirmed that the leaf width increased by 11% when treated with 5 mM, 49% when treated with 50 mM, and 44% when treated with 100 mM. Leaf length was confirmed to grow by 16% at 5 mM, 59% at 50 mM, and 82% at 100 mM treatment. As a future study, based on the effect of sea salt on the leaf and length growth of sweet basil by concentration, it was considered that more research is needed on the beneficial effects of sea salt on edible, medicinal, and aromatic plants. In addition, although salt has only been studied on stress in crops, we intend to contribute to providing basic data for research on ingredients more beneficial to the environment by finding various edible, medicinal, and aromatic plants using the sun-dried salt used in this study.

Evaluation of Plasticizer Pollution Levels in Mudflat Solar Salt, Salt Water, and Sea Water of Nationwide Saltpan (국내 염전에서 생산된 갯벌천일염, 함수 및 해수의 가소제(DEHP) 오염 수준 평가)

  • Kim, Hag-Lyeol;Baek, Hyung-Hee;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.10
    • /
    • pp.1460-1466
    • /
    • 2012
  • The purpose of this study was to evaluate plasticizer pollution levels in mudflat solar salt, salt water and sea water of the nationwide saltpan. Also, it was analyzed the relationship between DEHP in solar salt and PVC mat following private period. DEP (ranging from 0.00 to 1.55 ppb), DIBP (0.00~2.38), DBP (0.00~4.90), DEHA (0.00~2.32), and BBP (0.00~1.45) in solar salt were shown a extremely low concentrations, and DEHP was present a concentrations ranging from 0.00 to 268.5 ppb in solar salt. Further, DMP, DPrP, DNPP, DNHP, and DCHP were not detected in all solar salt. Phthalate in sea water and salt water was present a infinitesimal amount levels. DEHP levels in sea water and salt water were not shown a high risk levels ranging from 0.00 to 3.4 ppb, and from 0.00 to 21.4 ppb, respectively. As expected in PVC mat of nationwide saltpan, the correlation between DEHP in solar salt and PVC mat private period showed a low positive correlation coefficient ($r^2$=0.0362).