• Title/Summary/Keyword: sea surface salinity

Search Result 388, Processing Time 0.027 seconds

Distribution characteristics of chemical oxygen demand and Escherichia coli based on pollutant sources at Gwangyang Bay of South Sea in Korea (남해 광양만에서 오염원에 따른 화학적 산소요구량과 대장균의 해역별 분포특성)

  • Baek, SeungHo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3279-3285
    • /
    • 2014
  • This study aimed to understand seasonal and geographical characteristic of chlorophyll-${\alpha}$ (chl-${\alpha}$), COD (chemical oxygen demand) and Escherichia coli at Gwangyang Bay during the period from February 2010 to November 2012. The bay is divided into three different zones based on the pollutant levels and geographical characteristics. During the study periods, water temperature, salinity, Chl. ${\alpha}$, and chemical oxygen demand (COD) varied in the range of $4.68-28.63^{\circ}C$, 1.94-33.84 psu, 0.31-35.10 ${\mu}gL^{-1}$, and 0.70-13.35 $mgL^{-1}$, respectively. Total chl-a concentration were high at the zone I, which can be characterized as a semi-enclosed eutrophic area, and it were low at the zone III, which is influenced by low nutrients of surface warm water current from offshore of the bay. The high concentration of COD was observed at inner bay during the four seasons and the water quality level was kept to be bad condition during spring season at the zone II, which is influenced by Seomjin River water. The highest colony form of E. coli was recorded to be 3550 $cfuL^{-1}$ during summer at station 1 (zone I), whereas it was relatively kept low level during all seasons at the zone III. As a result, the E. coli was correlated with water temperature (r=0.31 p<0.05) and salinity (r=-0.55 p<0.05), implying that those parameters have play an important crucial role in proliferation of E. coli. Consequently, our results indicated that the E. coli can be significantly promoted within pollutant sources including the high nutrients supplied by rive discharge during spring and summer rainy seasons in semi-enclosed area of Gwangyang Bay.

The characteristics of marine environment and phytoplankton community around southwestern waters for ichthyotoxic dinoflagellate Cochlodinium polykrikoides monitoring programme (남서해역의 유해성 적조생물 Cochlodinium polykrikoides Margalef 모니터링을 위한 환경특성 식물플랑크톤 군집 동태)

  • Cho Eun Seob;Choi Yong Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.177-184
    • /
    • 2005
  • This study was to determine the fluctuation in phytoplankton assemblages with regarding to environmental conditions and nutrients, which were surveyed around Mokpo waters in the southwestern waters, Korea. Sampling was carried out on the Mokpo, Sinan, and Wando coasts from March to November 2003. The maximum sea surface temperature was recorded in August, and it ranged around $25^{\circ}C$ regardless of sampling sites. However, salinity in Mokpo waters showed a great variation, which ranged from 5-30 psu and recoded the minimum of 5 psu in July and the maximum of 30 psu in November. Moreover, in Mokpo waters, the chlorophyll a and SS concentration of the surface layer were also the highest values of $20\;{\mu}g\;l^{-1}\;and\;40\;{\mu}g\;l^{-1}$, respectively than those of Sinan and Wando waters. The concentrations of $NH_4-N,\;NO_2-N,\;NO_3-N,\;and\;PO_4-P$ were also he highest values of $0.018\;{\mu}mol\;^l{-1},\;0.062\;{\mu}mol\;l^{-1},\;1.2\;{\mu}mol\;l^{-1}\;and\;0.078\;{\mu}mol\;l^{-1}$, respectively in Morpo waters than those of Sinan and Wando waters. During the period of this study, the majority of the taxa were diatoms; Thalassiosira rotula, Rhizosolenia setigera, Prorocentrum minimum, Chaetoceros curvisetus, Leptocylindrus danicus, Pseudonitzschia pungens, and Chaetoceros spp. were detected in the dominant species of phytoplankton. The dinoflagellates were relatively abundant during the summer season in Wando waters, which attained an abundance of $10-20\%$. In Mokpo waters, DIN/DIP was the highest value of 700 in March, whereas the lowest was shown in Wando waters. However, DIN/DIP value in summer at Wando waters was extremely reversed, which appeared to be associated with the development of dinoflagellates. On the bais of factor analysis using SYSAT 6.0, nutrient showed somewhat correlation with chlorophyll a. Consequently, the process of discharge of fresh water in Mokpo waters plays an important role in extremely fluctuation in nutrients and conditions. Although Wando waters maintains a lack of nutrients, it should be influenced by different water current and may be associated with a concentration of nutrients.

The Ecosystem of the Southern Coastal Waters of the East Sea, Korea I. Phytoplankton Community Structure and Primary Productivity in September, 1994 (한국 동해 남부 연안생태계 연구 1. 1994년 9월에 있어서의 식물플랑크톤의 군집구조와 1차생산력)

  • LEE Joon-Baek;HAN Myung-Soo;YANG HanR-Seob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.45-55
    • /
    • 1998
  • Phytoplankton community and primary productivity have been investigated in a fall season in the southern coastal waters of the last Sea, Korea. A strong thermocline formed at the 20\~60\;m$ layer and a cold water mass also existed in the bottom around Yong-il Bay. The offshore of the surveyed area was likely to be influenced by relatively warmer water, whereas the inshore represented Higher primary productivity with lower water temperature and lower salinity. A total of 133 species of phytoplankton occurred, representing 107 spp. of diatom, 23 spp. of dinoflagellate 3 spp. of silicoflagellate. Skeletonema costatum and Asterionellepsis glacialis were most predominant with more than $30\%$ dominance ratio, while Leptocylindrus danicus was also dominant at all transect lines. Standing crops of phytoplankton ranged from $2.7{\times}10^3\;to\;141.6{\times}10^3\;cell^{\ell-1}$. Chlorophyll a concentration varied with stations and layers, but the $30\~50$ m layer showed maximun with about $1.18{\mu}g{\ell}^{-1}$ rather than at the surface layer. It is believed that the maximun in standing crops and chlorophyll of phytoplankton formed at the $20\~50$ m layer above the thermocline during the survey. Phytoplankton primary productivity ranged from 0.32 to 3.04 mgC $m^{-3}\;hr^{-1}$, showing higher at the inshore than at the offshore. The range of integrated primary productivity was $263.3\~1085.5 mgC\;m^{-2}\;day^{-1}$ for the euphotic layer. Photosysthesis rates varied with the range from 0.76 to 8.04 mgC mgChl $\alpha^{-1}\;hr^{-1}$. Phytoplankton photosynthesis at the inshore was saturated at lower irradiance ($15\~35\%$ of surface) and showed higher efficiency, Thus, it revealed that the phytoplankton community probably adapted to the middle of euphotic layer because the depth of mixing layer became thinner due to the formation of thermocline.

  • PDF

Flow and Mixing Behavior at the Tidal Reach of Han River (한강 감조구간에서의 흐름 및 혼합거동)

  • Seo, Il Won;Song, Chang Geun;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.731-741
    • /
    • 2008
  • Previous studies on the numerical simulation at the tidal reach of Han River tend to restrict downstream boundary as Jeon-ryu station due to difficulties in gaining cross section data and tidal elevation values at Yu-do. But, in this study, geometries beyond the confluence of Gok-reung stream and Im-jin River are constructed based on the numerical sea map; tidal elevation at the downstream boundary, Yu-do is estimated by harmonic analysis of In-cheon tide gage station so that hydrodynamic and diffusion behavior have been analyzed. The domain ranging from Shin-gok submerged weir to Yu-do is selected (which is 36.8 km in length). RMA-2 and RAM4 developed by Il Won Seo (2008) are applied to simulate flow and diffusion behavior, respectively. Numerical results of flow characteristic are compared with the measured data at Jeon-ryu station. Simulation is carried out from June 23 to 25 in 2006 on the ground that hydrologic data is satisfactory and tidal difference is huge during that period. The result shows that reverse flow occurs 5 times according to the tidal elevation at Yu-do and the maximum reverse flow is observed up to Jang-hang IC, which is 32.9 km in length. Also analysis is focused on the process of generation and disappearance of reverse flow, the distribution of water surface elevation and velocity along the maximum velocity line, and the transport of nonconservative pollutant. Pollutant injected from Gul-po stream spreads widely across the river; however, the size of BOD cloud entering from Gok-reung stream is relatively small because water depth at the mid and left side becomes deeper and maximum velocity occurs along the right bank so that transverse mixing is completed quickly. Finally, mixing characteristic of horizontal salinity distribution is obtained by estimating the salinity input with analytical solution of 1D advection-dispersion equation.

Global Ocean Data Assimilation and Prediction System in KMA: Description and Assessment (기상청 전지구 해양자료동화시스템(GODAPS): 개요 및 검증)

  • Chang, Pil-Hun;Hwang, Seung-On;Choo, Sung-Ho;Lee, Johan;Lee, Sang-Min;Boo, Kyung-On
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.229-240
    • /
    • 2021
  • The Global Ocean Data Assimilation and Prediction System (GODAPS) in operation at the KMA (Korea Meteorological Administration) is introduced. GODAPS consists of ocean model, ice model, and 3-d variational ocean data assimilation system. GODAPS assimilates conventional and satellite observations for sea surface temperature and height, observations of sea-ice concentration, as well as temperature and salinity profiles for the ocean using a 24-hour data assimilation window. It finally produces ocean analysis fields with a resolution of 0.25 ORCA (tripolar) grid and 75-layer in depth. This analysis is used for providing a boundary condition for the atmospheric model of the KMA Global Seasonal Forecasting System version 5 (GloSea5) in addition to monitoring on the global ocean and ice. For the purpose of evaluating the quality of ocean analysis produced by GODAPS, a one-year data assimilation experiment was performed. Assimilation of global observing system in GODAPS results in producing improved analysis and forecast fields with reduced error in terms of RMSE of innovation and analysis increment. In addition, comparison with an unassimilated experiment shows a mostly positive impact, especially over the region with large oceanic variability.

Changes in The Sensitive Chemical Parameters of the Seawater in EEZ, Yellow Sea during and after the Sand Mining Operation (서해 EEZ 해역에서 바다모래 채굴에 민감한 해양수질인자들)

  • Yang, Jae-Sam;Jeong, Yong-Hoon;Ji, Kwang-Hee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • Eight comprehensive oceanographic cruises on a squared $30{\times}30\;km$ area have been made to investigate the short and long-term impacts on the water qualities due to the sand mining operations at Exclusive Economic Zone (EEZ) in the central Yellow Sea from 2004 to 2007. The area was categorized to 'Sand Mining Zone', 'Potentially Affected Zone', and 'Reference Zone'. The investigation covered suspended solids, nutrients (nitrate, nitrite, ammonium, phosphate), and chlorophyll-a in seawater and several parameters such as water temperature, salinity, pH, and ORP. Additionally, several intensive water collections were made to trace the suspended solids and other parameters along the turbid water by sand mining activities. The comprehensive investigation showed that suspended solids, nitrate, chlorophyll-a and ORP be sensitively responding parameters of seawater by sand mining operations. The intensive collection of seawater near the sand mining operation revealed that each parameter show different distribution pattern: suspended solids showed an oval-shaped distribution of the north-south direction of 8 km wide and the east-west direction of 5 km wide at the surface and bottom layers. On the other hand, phosphate showed so narrow distribution not to traceable. Also ammonium showed a limited distribution, but its boundary was connected to the high nitrate and chlorophyll-a concentrations with high N/P ratios. From the last 4 years of the comprehensive and intensive investigations, we found that suspended solids, ammonium, nitrate, chlorophyll-a, and ORP revealed the sensitive parameters of water quality for tracing the sand mining operations in seawater. Especially suspended solids and ORP would be useful tracers for monitoring the water qualities of remote area like EEZ in Yellow Sea.

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.

Zooplankton and Neustonic Microplastics in the Surface Layer of Yeosu Coastal Areas (여수 연안 표층에 출현하는 동물플랑크톤과 미세플라스틱)

  • Kang, Hui Seung;Seo, Min Ho;Yang, Yun Seok;Park, Eun-Ok;Yoon, Yang Ho;Kim, Daejin;Jeong, Hyeon Gyeong;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • In planktonic ecosystems, the microplastics are considered as a potential food source for the zooplankton. To study a relationship between the zooplankton and the neustonic microplastics, a research experiment was carried out during May in the surface layers of the Yeosu coastal areas including Yeoja Bay, Gamak Bay, Yeosuhae Bay, and Botdol Sea. A neustonic zooplankton net (mesh size $300{\mu}m$; mouth area $30cm{\times}18cm$) was towed from the side of the ship in the event that it would not be affected by waves crashing by the ship at a speed of ca. 2.5 knots. All of the microplastic particles were separated from the zooplankton. The zooplankton and microplastics were appearing in a range of 61 to $763indiv.m^{-3}$ and 0.0047 to $0.3471particle\;m^{-2}$, respectively. It was noted that the Acartia omorii, Paracalanus parvus s. l., Labidocera euchaeta, A. hongi, decapod larvae, and cirriped larvae were predominantly seen in the experiment. For verifying relationships between zooplankton and environmental factors in addition to microplastics, a model redundancy analysis (RDA) was performed. The zooplankton were divided into two groups on the basis of feeding types (i.e. particle feeders, and carnivores), and the associated zooplankton larvae were also separately considered. A review of the additional environmental factors such as water temperature, salinity, turbidity, chlorophyll-${\alpha}$ concentration, diatom density, and dinoflagellate density were also contained in the analysis. The results showed that a noted zooplankton abundance had no close relation with the occurring number of microplastic particles, but rather was significantly related with other noted environmental factors such as temperature, salinity, turbidity, and chlorophyll-${\alpha}$ concentration. This fact implies that most zooplankton can feed themselves as a unit, by selecting the most likely available nutritious foods, rather than microplastics under the circumstance of food-richness areas, such what food resources are available as in the location of coastal waters.

Comparison of Growth of the Pacific Oysters, Crassostrea gigas, Cultured with Korean and Japanese Spats (한국산 및 일본산 굴, Crassostrea gigas 종패의 성장비교)

  • 정우건;조상만;문수경;정보영
    • The Korean Journal of Malacology
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • To study the growth of transplanted Pacific oysters, Crassostrea gigas, we sampled Korean and Japanese oysters attached in Chinhae Bay near Gaduk Island and in Seto inland sea in Japan, respectively, suspended in Pukman Bay. Water Temperature ranged from 11.2 to 27.8$^{\circ}C$ (mean 19.84 ${\pm}$ 5.47$^{\circ}C$) on the surface, and 11.1 to 23.6$^{\circ}C$ (mean 18.31 ${\pm}$ 4.18$^{\circ}C$) on the bottom. Salinity ranged from 31.45 to 34.57 (mean 33.10 ${\pm}$ 1.16) on the surface, and from 31.69 to 34.35 (mean 33.24 ${\pm}$ 1.06) on the bottom. salinity was the lowest in September and October, and the highest in December. Growth of oysters in shell height showed a significant difference after being suspended at the farm, reaching 70.3 ${\pm}$ 12.5 mm in the Korean oysters and 96.2 ${\pm}$ 14.6 mm in the Japanese oysters in December. While the Korean oysters showed relatively low growth rate and cessation of growth after sudden growth between June and July, the Japanese oysters showed continuous growth during the whole farming period, although stepwise growth was observed. It was not until September that meat weight showed a significant difference between the two. After September, there was a sudden increase in the Japanese oysters, reaching 7.5 ${\pm}$ 2.9 g in December, but growth of the Korean oysters showed slow growth rate during whole farming period, reaching 4.6 ${\pm}$ 1.9 g in December. here was an obvious decrease in the meat weight of Japanese oysters in December, which might be attributed to restriction of food. Condition factors rebounded in October in the Korean oysters and in September in the Japanese oysters, respectively, attaining 12.8 in the Korean oysters and 15.3 in the Japanese oysters at the end of investigation on December. Shell length-height regression equations were as follows: Korean oysters: S$\sub$h/=2.922S$\sub$t/,-4.8024 (r$^2$= 0.8541) Japanese oysters: S$\sub$t/=3.623S$\sub$h/,-5.1239 (r$^2$=0.7782) This showed the possibility of morphological transformation in the shell of the Korean oysters since shell height was longer than those reported by Bae et al. (1976) and Lee et al. (1992).

  • PDF

Geochemistry and Water Quality in the Tidal Flat of Saemangum Area, West Sea of Korea in Summer (하계 새만금 갯벌의 수질 분포 및 지화학적 특성에 관한 연구)

  • Park, Gyung Soo;Park, Soung Yun;Lee, Sam Geun;Lee, Yoon
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.133-147
    • /
    • 2004
  • Environmental quality(water and sediment) was analyzed in the tidal flat of Saemangum of Jeonbuk Province, the west coast of Korea, using the 101 sediment samples and 69 water samples collected in September 4~13, 2001. Major water quality parameters with the means of 69 surface water samples are as follows; $25.51{\pm}0.68^{\circ}C$ for water temperature, $29.88{\pm}5.01$ for salinity, $1.40{\pm}0.78mg/L$ for COD, $0.352{\pm}0.417mg/L$ for DIN, and $0.027{\pm}0.023mg/L$ for phosphate, respectively. Higher values were found at the subestuary of Dongjin and Mangyung River, and lower values at the Saemangum embayment and Gomso Bay. There was a significant negative correlation between salinity and the other water quality parameters(p<0.0001) such as COD, nutrients, SS and N/P. This correlation suggested that the major pollution sources be from terrestrial inputs through tributaries in this area. Principal component analysis clearly revealed a spatial variation of water quality; stations with higher values of nutrients and COD located subestuary of tributaries. 14 sediment quality parameters including 8 trace metals were measured using the 101 surface sediment samples. Average values for the parameters are as follows; Al $2.28{\pm}0.92%$, Cd $0.61{\pm}0.27ppm$, Cu $8.95{\pm}4.06ppm$, Fe $1.19{\pm}0.37%$, Mn $182.31{\pm}77.45ppm$, Ni $10.83{\pm}4.97ppm$, Pb $15.20{\pm}4.35ppm$, Zn $41.34{\pm}34.62ppm$, COD $2.68{\pm}1.85mg/g\;dry$, AVS $0.04{\pm}0.08mg/g\;dry$, IL $1.29{\pm}1.08%$, water content $24.11{\pm}4.49%$, TN $0.02{\pm}0.02%$, TC $0.22{\pm}0.30%$. Spatial variations of sediment quality were not clear as water quality. Some higher values were found at the subestuary of Gum River and lower values at the other area. There was a significant positive correlation between the heavy metal concentrations and organic materials within the sediment(p<0.05). Enrichment factors showed the ranges of 1~2 for most of the metals in the sediment except zinc(1~6), indicating no serious exogenous input of heavy metals in the study area. Also, the heavy metal concentrations in the sediment were within the ranges found at the natural marine environments.

  • PDF