• Title/Summary/Keyword: sea area environment

Search Result 1,174, Processing Time 0.028 seconds

Wind Tunnel Experiments for Studying Atmospheric Dispersion in the Complex Terrain I.Dispersion in a mountainous Area (복잡한 지형내 오염물질의 대기확산 풍동실험: I. 산지지형에서의 확산)

  • 경남호;김영성;손재익
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.169-178
    • /
    • 1992
  • Dispersion of pollutant in a mountainous area is simulated in a wind tunnel. In the northwest side of the terrain model, the sea level is assumed. Wind from the sea initially confronts hills along the shoreline, a line of large buildings next, and finally a valley between high mountains in the south and in the east. In the northwest wind conditions, severe flow separation occurs in the lee side of hills, even beyond the building area. Pollutant from the buildings is trapped in this region and its concentration is the highest. In the west wind conditions, pollutant from the buildings flows along the hills aslant the main wind direction in this case. Since large valley is located in the downstream, pollutant tends to disperse along the valley.

  • PDF

A Study on the Sea Level Variations in Korean Coastal Area (한국연안해역에서의 해면수위의 변동에 관한 연구)

  • 이경연;김동수;손창배;김창제
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 1999
  • This paper is to estimate the long and short term variations of mean sea level in Korean coastal waters by identifying interrelations among the mean sea level, atmospheric pressure and air temperature along the coast. For this, long-term tidal data observed at tidal and weather observation stations were brought into a statistical analysis. It was noted that, in a general sense, an inverse relationship exists between the sea level and the atmospheric pressure and a positive relationship between the sea level and air temperature, respectively. The maximum difference of monthly mean sea level was in the range of 21 to 25 cm at the eastern and southeastern coasts, meanwhile more than 30 cm being in both in southern and western coasts. It was also noted that mean sea level continues to rise in a long-term basis. Long-term variation of mean sea level trends to rise 0.10 ∼ 0.44 cm per year for each region. However, the long-term variation of mean sea level in the isolated islands shows a different trend, Ullngdo being 0.41 cm fall per year and Chejudo being 0.44 cm rise per year.

  • PDF

Simulation of Atmospheric Dispersion over the Yosu Area -II. Diurnal Variations by Solar Radiation- (여수지역 대기확산의 수치 모사 -II. 일사에 의한 일변화-)

  • 오현선;김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.225-236
    • /
    • 2000
  • Diurnal variations of wind field and pollutant dispersion over the Yosu area under the insolation conditions of summer and winter were investigated by using the Regional Atmospheric Modeling System (RAMS). Initially, horizontally homogeneous wind field were assumed on the basis of sounding data at the Kwangju upper-air station for days whose morning wind speeds were below 2m/s. In these days, the sea breeze prevailed in summer while the land breeze lasted for a few hours in the morning; the effect of synoptic winds was strong in winter with some inclusion of wind variations owing to the interaction between sea and land. The predicted wind direction at the location of the Yosu weather station captured an important change of the sea-land breeze of the observed one. The predicted wind speed and the air temperature agreed with observed ones in a reasonable range. In the morning, both in summer and winter, winds around the source location were diverged and became weak between the mountainous area to the southeast and the Kwangyang Bay to the north. Winds, however, accelerated while blowing to the east and south and blowing on the mountainous area. Complicated wind fields resulted in high pollutant concentrations at almost all receptors considered. These high concentrations in the morning were even comparable to the ISCST3 calculations with the worst-case and typical meteorological conditions designated by USEPA(1996). On the other hand, in the afternoon, the wind field was rather uniform even in the mountainous area with development of mixing layer and the concentration distributions being close to the Gaussian distributions.

  • PDF

An Effective Shipping Transport Operation Plan for the Pan-Yellow Sea Area: Focusing on the Introduction of an Incheon-China Container Liner Route (환황해권 해상운송의 효율적 운영방안-인천/중국 컨테이너항로 개설을 중심으로-)

  • 김홍섭
    • Journal of Korea Port Economic Association
    • /
    • v.17 no.2
    • /
    • pp.139-166
    • /
    • 2001
  • Globalization and regionalization are major trends in the international economic system. The severe competition among countries has signalled the need for a new international trade system as prescribed by the WTO, which regulates international trade practices. Additionally, expanding the activities and role of the Pan-Yellow Sea area in the world has a very important function in terms of regional cooperation and logistics environment. In this paper, the trading conditions and shipping transport problems of the Pan-Yellow Sea area (North-East Asia) were investigated. Shipping transport conditions in the Pan-Yellow Sea area, particularly Korea-China routes, were surveyed as well. A new Incheon-China container liner route was suggested as a partial remedy to some of the shipping transport problems of the Pan-Yellow Sea Area (North-East Asia). The Incheon-China Container Liner route is more efficient than Pusan and Pyungtaek Ports or the car ferry route to China in terms of transport time and expense. The transport burden indicator which includes the time and expense of transport, can be a useful tool in comparing these routes. Accordign to the transport burden indicator, the Incheon-China Container Liner route is more efficient than the Pusan, Pyungtaek, or car ferry routes. To establish a successful liner route between the ports of Inchon and China, there is a need to prepare three measures that contain short-term medium-term and long-term strategies. Furthermore, these measures should be prepared and adopted in phases, in accordance with considerations of future conditions for shipping and logistics in the Pan-Yellow Sea area.

  • PDF

Deterministic Estimation of Typhoon-Induced Surges and Inundation on Korean Coastal Regions (국내 연안 태풍 해일의 결정론적 추정 및 침수 영역 예측)

  • Ku, Hyeyun;Maeng, Jun Ho;Cho, Kwangwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This research mainly focuses on examining the applicability of the deterministic model SLOSH (Sea, Lake and Overland Surges from Hurricanes) on Seas covering South Korea. Also, a simple bathtub approach which estimates coastal inundation area is validated as a first step of estimating effects of sea-level rise on the coastal cities of South Korea according to climate change. Firstly, the typhoon-induced surges are obtained from the model SLOSH by adopting historical typhoons MAEMI (0314) and BOLAVEN (1215). The results are compared to observational, typhoon-induced surge heights at several tidal stations. The coastal inundation area is estimated by comparing the maximum envelop of waves (MEOW) and the elevation of coastal land. It reproduces well the inundation area. It can be seen that this research gained applicability for estimating further potential coastal inundation with climate changes.

Analyzing the Effect of Groundwater Dam Construction Using Groundwater Modeling (지하수 모델링을 통한 지하수댐 건설 효과 분석)

  • Kim, Ji-Wook;Lim, Kyung-Nam;Park, Hyun-Jin;Rhee, Bo-Kyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.11-22
    • /
    • 2013
  • SEAWAT, a linked modeling program of Visual MODFLOW was used to analyze the change in groundwater levels and salinity related groundwater dam construction in Cheongsan island, Wando-Gun, Jeollanam-Do. The steady-state model results show the groundwater flow and salinity distribution of the studied area. The groundwater flows from north-west and south-east highlands into the river, located in the middle part of the basin, and is eventually discharged to the ocean. Part of the sea water infiltrates into the river; and through the estuary's alluvium aquifer, the sea water intrusion takes place spreading to about 830 m from the ocean. The transient model results show that after the groundwater dam construction, groundwater levels will rise to a maximum of 2.0 m upstream, and the groundwater storage will increase 21,000 after 10 years. Meanwhile 31% of the total area affected by sea water intrusion will decrease. To conclude, the groundwater dam is a very useful method for a secure water resource in preparation for drought and water shortages in the island regions.

High-resolution Simulation of Meteorological Fields over the Coastal Area with Urban Buildings (건물효과를 고려한 연안도시지역 고해상도 기상모델링)

  • Hwang, Mi-Kyoung;Kim, Yoo-Keun;Oh, In-Bo;Kang, Yoon-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.137-150
    • /
    • 2010
  • A meso-urban meteorological model (Urbanized MM5; uMM5) with urban canopy parameterization (UCP) was applied to the high-resolution simulation of meteorological fields in a complex coastal urban area and the assessment of urban impacts. Multi-scale simulations with the uMM5 in the innermost domain (1-km resolution) covering the Busan metropolitan region were performed during a typical sea breeze episode (4~8 August 2006) with detailed fine-resolution inputs (urban morphology, land-use/land-cover sub-grid distribution, and high-quality digital elevation model data sets). An additional simulation using the standard MM5 was also conducted to identify the effects of urban surface properties under urban meteorological conditions. Results showed that the uMM5 reproduced well the urban thermal and dynamic environment and captured well the observed feature of sea breeze. When comparison with simulations of the standard MM5, it was found that the uMM5 better reproduced urban impacts on temperature (especially at nighttime) and urban wind flows: roughness-induced deceleration and UHI (Urban Heat Island)-induced convergence.

Mitigation for the anti-function in caused by Saemangeum reclamation (새만금간척에 따른 미티게이션)

  • 신문섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.169-174
    • /
    • 1999
  • The reclamation area of Saemangeum (Kunsan) located between 126$^{\circ}$10' -126$^{\circ}$50'E and and 35$^{\circ}$35'N -36$^{\circ}$05'N at the western coast of Korea. The construction of the 33km sea dike is building in the Saemangeum area. When the construction of the sea dike in the coastal region takes plase, there exists a certain amount of soil which is diffused by the tidal current. Behavior of the soil diffusion usually depends on its intrinsic characteristics, bathymetry, construction method and used mchinery. The amount of soil at the construction acts as a pollutant which is the cause of changing the marine environment. When the soil material is diffused , it may form a layer which obstructs the light passing into the sea and causes the extinction or alteration of the living beings on the sea bottom. The settlement of soil material could change the sea bottom deposit. The purpose of MITIGATION is to harmonize the development and the conservation of environment, to restrict environmental destruction and to reproduce the enviroment damaged by the construction in the coastal region. The purpose of this study is to find the method by which we minimize the anti-function of development in the coastal region. Tide and tidal current are calculated using a two-dimensional numerical model before the construction of sea dike in Saemangeum Bay. The numerical results are compared well with field observations. On the basis of these results, we caculated the tide and tidal current after the construction of the sea dike in order to investigate the change of the tide and tidal current after the construction of the sea dike. Moreover, we calculated the tide and tidal current after the construction of submerged breakwater in order to preserve the enviornmental condition of creature habitat . We compared the tide and tidal current before and after the construction of submerbed breakwater, to investigate the possbility of MITIGATION in the fisheries.

  • PDF