• Title/Summary/Keyword: screw & barrel

Search Result 66, Processing Time 0.025 seconds

Physicochemical Properties of Rice Extrudate Added with Onion Kimchi Powder (양파김치 분말을 첨가한 쌀 압출팽화물의 이화학적 특성)

  • Keawpeng, Ittiporn;Kang, Seong-Koo;Park, Yang-Kyun
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.504-510
    • /
    • 2007
  • An extrusion process was to make an onion kimchi snack from rice grit and onion kimchi powder, in an effort to enhance the nutritional value, flavor, and physicochemical properties of the extrudate. This study investigated optimum conditions (moisture content, barrel temperature, and the content of onion kimchi powder) for the production of high-quality rice extrudate products, and measured quality properties (water absorption index, texture, expansion ratio, and color) of rice extrudate to which onion kimchi powder had been added. Onion kimchi powder at 3%, 5%, 7%, and 10% (all w/w) was mixed with rice grit and the mixture then extruded in a twin-screw extruder. The texture of onion kimchi mack became softer as onion kimchi powder level rose, and water absorption ability increased. The expansion ratio and the lightness of extrudates decreased with increases in onion kimchi powder levels. The maximum water absorption index am the minimum hardness were obtained with 10% onion kimchi powder. Rice extrudate with 10% onion kimchi powder was suitable for extrusion cooking md obtained the highest score for overall acceptability by sensory evaluation.

Optimization of Extrusion Cooking Conditions for the Preparation of Seasoning from Manila Clam Ruditapes philippinarum (바지락(Ruditapes philippinarum) 조미소재 제조를 위한 Extrusion Cooking 공정의 최적화)

  • Shin, Eui-Cheol;Kwak, Dongyun;Ahn, Soo-Young;Kwon, Sangoh;Choi, Yunjin;Kim, Dongmin;Choi, Gibeom;Boo, Chang-Guk;Kim, Seon-Bong;Kim, Jin-Soo;Lee, Jung Suck;Cho, Suengmok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.823-833
    • /
    • 2020
  • The Manila clam Ruditapes philippinarum, is an important marine bivalve that is widely distributed along the west and north coasts of South Korea. It has been used in a variety of Korean foods owing to its superior umami taste. In the present study, we developed a flavoring with an excellent sensory preference from Manila clam using extrusion cooking processing. Optimization of extrusion cooking conditions was performed using response surface methodology (RSM). Barrel temperature (X1, 140-160℃) and screw speed (X2, 400-560 rpm) of the extruder were chosen as independent variables. The dependent variable was overall acceptance (Y, points). The estimated optimal conditions were as follows: overall acceptance (Y): X1=140℃ and X2=560 rpm. The indicated value of the dependent variable overall acceptance (Y) under the optimal conditions was 8.94 points, which was similar to the experimental value (8.82 points). Overall acceptance of the Manila clam flavoring was related to its umami and Manila clam tastes. The electronic nose and tongue results successfully segregated different clusters of the samples between the lowest and highest sensory scores. The sample with the highest sensory score had higher sourness, umami, and sweetness intensities, and the lowest sensory scored sample showed more off-flavor compounds.

Effects of soy defatting on texturization of texturized vegetable proteins (대두 탈지 처리가 식물조직단백 조직화 특성에 미치는 영향)

  • Chan Soon Park;Mi Sook Seo;Sun Young Jung;Boram Park;Shin Young Park
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.875-884
    • /
    • 2023
  • In this study, the quality characteristics of texturized vegetable proteins (TVP) produced from defatted soy flour (DSF) were analytically compared with those of texturized vegetable proteins produced with isolated soy protein (ISP) and non-defatted soy flour (SF). The base raw material formulation consisted of 50% soy proteins, 30% gluten, and 20% corn starch. A cooling die-equipped extruder was used with a barrel temperature set at 190℃ and screw rotation speed of 250 rpm. With respect to the hardness of isolate soy proteins, that of soy flour and defatted soy flour was 22.4% and 68.8%, respectively, and gumminess was 17.6% and 44.3%, respectively. Defatting increased chewiness, shear strength, and springiness. Moisture content was higher in soy flour than in defatted soy flour, while there were no significant differences in terms of water absorption and turbidity. The pH was higher with soy flour than with defatted soy flour. Concerning color, the L and b values were higher with soy flour, while the a value was higher with defatted soy flour. These results suggest that defatting soybeans can improve the quality of plant-based proteins. Further research is needed to address the quality differences from those of isolated soy proteins.

Quality properties of texturized vegetable protein made from defatted soybean flour with different soybean seed coat contents (대두껍질 함량에 따른 탈지대두분말 식물조직단백의 품질 특성)

  • Chan Soon Park;Mi Sook Seo;Sun Young Jung;Seul Lee;Boram Park;Shin Young Park;Yong Suk Kim
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.896-904
    • /
    • 2023
  • The texturization characteristics of textured vegetable protein (TVP) were investigated based on the extent of soybean decoating during the pretreatment of defatted soybean flour used for TVP. The raw materials for TVP consisted of 50% defatted soybean flour, 30% gluten, and 20% corn starch. The weight ratios of soybean seed coat to soybean flour were 9%, 6%, 3%, and zero. Extrusion was performed using an extruder equipped with a cooling die, maintaining a barrel temperature of 190℃ and screw speed of 250 rpm, Water was injected at a rate of 9 rpm using a metering pump. Regarding the textures of the extruded TVPs produced from defatted soybean flour, an increase in the soybean seed coat content led to a decrease in the apparent fibrous structural layer and an increase in hardness. However, there were no significant changes in elasticity and cohesion. Moreover, as the soybean seed coat content increased, the pH of TVPs decreased. A higher soybean seed coat content also tended to lower the moisture content, increasing water absorption, solids elution, and turbidity. These results suggest that an increased seed coat content reduces the proportion of protein, and the fibers present in the seed coats prevent texturization.

Physicochemical Quality Characteristics of Traditional Kamju Using Extruded Rice Collet Powder (압출 쌀 콜렛 분말을 사용한 전통 감주의 제조 및 이화학적 품질 특성)

  • Je, Hae-Soo;Kang, Kyung-Hun;Park, Si-Young;Choi, Byeong-Dae;Kang, Young-Mi;Kim, Jeong-Gyun
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • This study was conducted to investigate the physicochemical quality properties and provide basic data for the activation of traditional Kamju of juice type product prepared by mixing malt and extruded rice collet powder. Malt extracts were prepared by extracting the mixture of malt and water at a weight ratio of 25:75 after soaking for 2 h at $45^{\circ}C$. Rice collet powder was prepared by adjusting the barrel temperature to $95^{\circ}C$, screw speed to $3.07{\times}g$, discharge port diameter to 7 mm and a raw material input to 50 kg/h, the powder was then ground to a particle size of 80 mesh. The physicochemical characteristics (pH, color, viscosity, reducing sugars, number of viable cells, free amino acids) and sensory evaluations were conducted at various time points during the saccharification and at different mixing ratios of the extruded rice collet powder to malt extract (5:95, 15:85, 25:75, 35:65, each at $55^{\circ}C$ for 9 h). As a result, with an increase in the proportion of the extruded rice collet powder and saccharification time, the physicochemical properties of traditional Kamju significantly improved (p<0.05). A mixing ratio of 35:65 rice collet powder to malt extract and a saccharification time of 9 h were found to be the most desirable conditions. However, based on the sensory evaluation, a mixing ratio of rice collet powder and malt extract of 25:75 and a saccharification time of 5 h resulted in the most preferable palatability of traditional Kamju (p<0.05). Therefore, the mixing ratio and saccharification time should be determined to provide a better choice with respect to the taste and economic aspects of traditional Kamju.

Increase in Anti-Oxidant Components and Reduction of Off-Flavors on Radish Leaf Extracts by Extrusion Process (압출성형 무청 분말 추출물의 항산화 물질 함량 증가 및 이취 감소)

  • Sung, Nak-Yun;Park, Woo-Young;Kim, Yi-Eun;Cho, Eun-Ji;Song, Hayeon;Jun, Hyeong-Kwang;Park, Jae-Nam;Kim, Mi-Hwan;Ryu, Gi-Hyung;Byun, Eui-Hong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1769-1775
    • /
    • 2016
  • Aerial parts (leaves and stems) of radish are usually discarded due to the distinct undesirable flavors associated with inappropriate preparations, despite their many health benefits. In this study, we examined the role of extrusion process in the removal of off-flavors and elevation of antioxidant activity in radish (Raphanus sativus L.) leaves and stems. To optimize the extrusion conditions, we changed the barrel temperature (110, 120, and $130^{\circ}C$), screw speed (150, 200, 250, and 300 rpm), and moisture content (20, 25, and 30%). The polyphenol and flavonoid contents significantly increased in extruded radish leaves and stems (ER) under optimum extrusion conditions ($130^{\circ}C$, 250 rpm, and 20%). Under extrusion conditions, we compared off-flavors (as amount of sulfur-containing compound) levels between ER and non-extruded radish leaves and stems (NER) by an electronic nose. A total of six peaks (sulfur-containing compound) were similarly detected in both ER and NER, whereas the ER showed reduced off-flavors. Levels of glucosinolate (${\mu}g/g$), which can be hydrolyzed into off-flavors during mastication or processing, were significantly decreased in the ER. From these results, extrusion processing can be an effective method to increase anti-oxidant activity and removal of off-flavors in radish leaves and stems.