• Title/Summary/Keyword: screen printed electrode

Search Result 96, Processing Time 0.025 seconds

Impedance Spectroscopy Analysis of the Screen Printed Thick Films (스크린 프린트된 후막의 Impedance Spectroscopy 특성 분석)

  • Ham, Yong-Su;Moon, Sang-Ho;Nam, Song-Min;Lee, Young-Hie;Koh, Jung-Hyuk;Jyoung, Soon-Jong;Kim, Min-Soo;Cho, Kyung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.477-480
    • /
    • 2010
  • In this study, we fabricate 3 wt% $Li_2CO_3$ doped $(Ba,Sr)TiO_3$ thick films on the Ag/Pd bottom electrode printed $Al_2O_3$ substrates for the LTCCs (low temperature co-fired ceramics) applications. From the X-ray diffraction analysis, 3 wt% $Li_2CO_3$ doped BST thick films on the Ag/Pd printed $Al_2O_3$ substrates, which sintered at $900^{\circ}C$, showed perovskite structure without any pyro phase. The dielectric properties of 3 wt% $Li_2CO_3$ doped BST thick films are measured from 1 kHz to 1 MHz. To investigate the electrical properties of 3 wt% $Li_2CO_3$ doped BST thick films, we employ the impedance spectroscopy. The complex impedance of 3 wt% $Li_2CO_3$ doped BST thick films are measured from 20 Hz to 1 MHz at the various temperatures.

High-temperature Adhesion Promoter Based on (3-Glycidoxypropyl) Trimethoxysilane for Cu Paste

  • Jiang, Jianwei;Koo, Yong Hwan;Kim, Hye Won;Park, Ji Hyun;Kang, Hyun Suk;Lee, Byung Cheol;Kim, Sang-Ho;Song, Hee-Eun;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3025-3029
    • /
    • 2014
  • To realize copper-based electrode materials for printed electronics applications, it is necessary to improve the adhesion strength between conductive lines and the substrate. Here, we report the preparation of Cu pastes using (3-glycidoxypropyl) trimethoxysilane (GPTMS) prepolymer as an adhesion promoter (AP). The Cu pastes were screen-printed on glass and polyimide (PI) substrates and sintered at high temperatures (> $250^{\circ}C$) under a formic acid/$N_2$ environment. According to the adhesion strengths and electrical conductivities of the sintered Cu films, the optimized Cu paste was composed of 1.0 wt % GPTMS prepolymer, 83.6 wt % Cu powder and 15.4 wt % vehicle. After sintering at $400^{\circ}C$ on a glass substrate and $275^{\circ}C$ on a PI substrate, the Cu films showed the sheet resistances of $10.0m{\Omega}/sq$. and $5.2m{\Omega}/sq$., respectively. Furthermore, the sintered Cu films exhibit excellent adhesion properties according to the results of the ASTM-D3359 standard test.

Development of electrochemical biosensor for determination of galactose (4갈락토오즈 측정을 위한 전기화학적 바이오센서 개발)

  • Park, Kap Soo;Cho, Soon Sam;Quan, De;Lee, Jae Seon;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.393-399
    • /
    • 2007
  • In principle, the blood galactose level may be determined conveniently with a strip-type biosensor similar to that for glucose. In this study, we describe the development of a disposable galactose biosensor strip for point-of-care testing. The sensor strip is constructed with screen-printed carbon paste electrode (SPCE) and sample amount (< $100{\mu}L$). The developed strip the galactose level in less than 90 s using bienzymatic system of galactose oxidase (GAO) and horseradish peroxidase (HRP). The effects of pH, mediator (1,1-ferrocenedimethanol) concentration, ratio of enzymes, and applied potential were determined preliminarily with glassy carbon electrodes, and optimized further with the strip-type electrodes. The sensor exhibits linear response in the range of $0{\sim}400{\mu}M$ ($r^2$ = 0.997, S/N = 3). Since a low working potential, in principle, the fabricated disposable galactose biosensor has -100 mV (vs. Ag/AgCl), it is applied for the detection of galactose, interfering responses from common interferents such as ascorbic acid, uric acid and acetaminophen could be minimized. The sensor has been used to determine the total galactose level in standard samples with satisfactory reproducibility (CV = 5 %).

Synthesis of a New Cathode Redox Polymer for High Performance in Biofuel Cells

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2803-2808
    • /
    • 2014
  • High potential and fast electron transfer of a cathode mediator are significant factors for improving the performance of biofuel cells. This paper reports the first synthesis of a cathode redox polymer that is a coordination complex of poly (acrylic acid-vinylpyridine-acryl amide) (PAA-PVP-PAA) and [Os(4,4'-dicarboxylic acid-2,2'-bipyridine)$_2Cl_2]^{/+}$ ($E^{\circ}=0.48V$ versus Ag/AgCl). Bilirubin oxidase can be easily incorporated into this polymer matrix, which carried out the four-electron oxygen under typical physiological conditions (pH 7.2, 0.14 M NaCl, and $37^{\circ}C$). This new polymer showed an approximately 0.1 V higher redox potential than existing cathode mediators such as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. In addition, we suggest increasing the polymer solubility with two hydrophilic groups present in the polymer skeleton to further improve fast electron transfer within the active sites of the enzyme. The maximum power density achieved was 60% higher than that of PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. Furthermore, high current density and electrode stability were confirmed for this osmium polymer, which makes it a promising candidate for high-efficiency biofuel cells.

Simple fabrication process and characteristic of a screen-printed triode-CNT field emission arrays for the flat lamp application

  • Jung, Y.J.;Park, J.H.;Jeon, S.Y.;Park, S.J.;Alegaonkar, P.S.;Yoo, J.B.;Park, C.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1214-1218
    • /
    • 2006
  • We introduced simple fabrication process for field emission devices based on carbon nanotubes (CNTs) emitters. Instead of using the ITO material as a transparent electrode, a metal (Au) with thickness of 5-20nm was used. Moreover, the ITO patterning process was eliminated by depositing metal layer, before the CNT printing process. In addition, the thin metal layer on photo resist (PR) layer was used as UV block. We fabricated the CNT field emission arrays of triode structure with simple process. And I-V characteristics of field emission arrays were measured. The maximum current density of $254{\mu}A/cm2$ was achieved when the gate and the anode voltage was kept 150V and 3000V, respectively. The distance between anode and cathode was kept constant.

  • PDF

Gas Sensing Characteristics and Doping Effect of $MoO_3$ Thin Films prepared by RF magnetron sputtering (RF magnetron sputtering법으로 제조한 $MoO_3$ 박막의 가스 감지 특성 및 첨가물의 영향)

  • Hwang, Jong-Taek;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.460-463
    • /
    • 2002
  • $MoO_3$ thin films were deposited on electrode and heater screen-printed alumina substrates in $O_2$ atmosphere by RF reactive sputtering using Molybdenum metal target. The deposition was performed at $300^{\circ}C$ with 350W of a forward power in an $Ar-O_2$ atmosphere. The working pressure was maintained at $3{\times}10^{-2}mtorr$ and all deposited films were annealed at $500^{\circ}C$ for 5hours. To investigate gas sensing characteristics of the addition doped $MoO_3$ thin film, Co, Ni and Pt were used as adding dopants. The sensing properties were investigated in tenn of gas concentration under exposure of reducing gases such as $H_2$, $NH_3$ and CO at optimum working temperature. Co-doped $MoO_3$ thin film shows the maximum 46.8% of sensitivity in $NH_3$ and Ni-doped $MoO_3$ thin film exhibits 49.7% of sensitivity in $H_2$.

  • PDF

Study of New Light Source with Nano Carbon Material (나노카본을 이용한 조명용 신광원에 관한 연구)

  • Kim, Kwang-Bok;Kim, Yong-Won;Jung, Han-Gi;Song, Yoon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.31-34
    • /
    • 2006
  • The characteristic of carbon nano fiber (CNF) as electron emitters was described. Carbon nano fiber (CNF) of herringbone was prepared by thermal chemical vapor deposition(CVD), mixed with binders and conductive materials, and then were formed by screen-printing process. In order to increase effectively field emissions, the surface treatment of rubbing & peel-off was applied to the printed CNF emitters on cathode electrode. The measurements of field emission properties were carried out by using a diode structure inline vacuum chamber. CNF of herringbone type showed good emission properties that a turn on field was as low as $2.5V/{\mu}m$ and current density was as large as $0.15mA/cm^2$ of $4.5V/{\mu}m$ with electric field. After the vacuum packaged panel of 5-inch in diagonal, the measured white brightness was as high as $7000cd/m^2$ at 1900V of anode and 700V of gate voltage.

  • PDF

Daily Amperometric Monitoring of Immunoglobulin E in a Mouse Whole Blood: Model of Ovalbumin Induced Asthma

  • Lee, Ju Kyung;Yoon, Sung-hoon;Kim, Sang Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • There is an increasing interest in monitoring of specific biomarker for determining progression of a disease or efficacy of a treatment. Conventional method for quantification of specific biomarkers as enzyme linked immunosorbent assay (ELISA) has high material costs, long incubation periods, requires large volume of samples and involves special instruments, which necessitates clinical samples to be sent to a lab. This paper reports on the development of an electrochemical biosensor to measure total immunoglobulin E (IgE), a marker of asthma disease that varies with age, gender, and disease in concentrations from 0.3-1000 ng/mL with consuming 20 µL volume of whole blood sample. The sensor provides rapid, accurate, easy, point-of-care measurement of IgE, also, sequential monitoring of total IgE with ovalbumin (OVA) induced mice is another application of sensor. Taken together, these results provide an alternative way for detection of biomarkers in whole blood with low volumes and long-term ex-vivo assessments for understanding the progression of a disease.

Field Emission Characteristics of Surface-treated CNT Emitter by Ar Ion Bombardment (아르곤 이온에 의해 표면처리된 CNT 에미터의 전계방출 특성)

  • Kwon, Sang-Jik
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A surface treatment was performed after the screen printing of a carbon nanotube paste for obtaining the carbon nanotube field emission array(CNT FEA) on the soda-lime glass substrate. In this experiment, Ar ion bombardment was applied as an effective surface treatment method. After making a cathode electrode on the glass substrate, photo sensitive CNT paste was screen-printed, and then back-side was exposure by uv light. Then, the exposed CNT paste was selectively remained by development. After post-baking, the remained CNT paste was bombarded by accelerated Ar ions for removing some binders and exposing only CNTs. As results, the field emission characteristics were strongly depended on the accelerating energy. At 100 eV, the emission was highest and as the acceleration energy increases more then 100 eV, the emission decreased. This was due to the removal of CNT itself as well as binders.

Preparation of Low-Temperature Fired PZT Thick Films on Si by Screen Printing

  • Cheon, Chae-Il;Lee, Bong-Yeon;Kim, Jeong-Seog;Bang, Kyu-Seok;Kim, Jun-Chul;Lee, Hyeung-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.20-23
    • /
    • 2003
  • Piezoelectric powder with the composition of PbTiO$_3$-PbZrO$_3$-Pb(Mn$\_$1/3/Nb$\_$2/3/)O$_3$ and small particle size of 0.3 $\mu\textrm{m}$ was investigated for low-temperature firing of PZT thick films. PbTiO$_3$-PbZrO$_3$-Pb(Mn$\_$1/3/Nb$\_$2/3)O$_3$ ceramics showed dense microstructure and superior piezoelectric properties, electromechanical coupling factor (k$\_$p/) of 0.501 and piezoelectric constant (d$\_$33/) of 224. The PZT paste was made of the powder and organic vehicles, and screen-printed on Pt(450nm)/YSZ(110nm)/SiO$_2$(300nm)/Si substrates and fired at 800∼900$^{\circ}C$. Any interface reaction between the PZT thick film and the bottom electrode was not observed in the PZT thick films. The PZT thick film fired at 800$^{\circ}C$ showed moderate electrical properties, the remanent polarization(p$\_$r/) of 16.0 ${\mu}$C/$\textrm{cm}^2$, the coercive field(E$\_$c/) of 36.7 ㎸/cm, and dielectric constant ($\varepsilon$$\_$r/) of 531. Low-temperature sinterable piezoelectric composition and high activity of fine particles reduced the sintering temperature of the thick film. This PZT thick film could be utilized for piezoelectric microactuators or microsensors that require Si micromachining technology.