• Title/Summary/Keyword: screen mesh

Search Result 177, Processing Time 0.031 seconds

The Thickness of a Sensitive Emulsion on the Double Layer Screen Plate (이중층 스크린 인쇄판에 도포된 감광유제의 두께)

  • Jung, Gi-Young;Kang, Young-Reep
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.125-132
    • /
    • 2011
  • Is very simple in tension work of screen mesh for effective printing if worker uses screen mesh of player who desire at screen print process. General method is methods that use mesh of player who want on screen frame as screen plate because tensioned. The single layer screen plate was made from one sheet screen mesh and the double layer screen plate was made from two sheets screen mesh overlapped. The thickness of sensitive emulsion applied to double layer screen plate is more thicker than two time s of thickness of emulsion applied to single layer screen plate. It seems that the sensitive emulsion inserted between an upper layer and a lower layer of double layer screen mesh.

A Study on the Optimal Selection Method of Screen Mesh for Domestic Halftone Screen Printing (국내 하프톤 스크린 인쇄를 위한 최적의 스크린 망사 선택 방법에 관한 연구)

  • Choi, In-Sik;Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Screen printing is a printing method with flexible plate surface characteristics. In addition, since the appearance of electronics industry the screen printing has been demanding high quality and definition. However, Screen printing is a method for taking ink through mesh opening because screen mesh tends to restrict quality of screen printing. In particular, the biggest problem compared with other printing type is halftone reproduction characteristics. Halftone reproduction characteristics for screen printing depend on screen mesh and opening. Dot losses or dot gains are observed through various types of screen mesh because thread of screen mesh interfere with the movement of the ink. Excessive dot losses or gains can affect the tonal range. Furthermore, this problem can result in other problem such as bad contrast and gray balance. Therefore, it is an important factor to use proper screen mesh for halftone screen printing. However, domestic screen printing industry relies on worker's experience in field rather than depending on objective data although standardized specifications and optimal printing conditions are required for screen printing. For this reason, it is important to stipulate standard condition for domestic screen printing industry. Therefore, it was examined to find tonal range by mesh opening in halftone prints process of screen printing used domestic paper and ink in this study. In addition, TVI(Tone Value Increase) characteristic was observed by comparing to the manuscripts and prints of the dot area ratio. Furthermore, contrast value and gray balance were confirmed for each condition of the printout. Conditions for the proper selection of screen mesh screen for the quality of the prints were also examined, compared with the international standard of screen printing, ISO 12647-5.

Development of Flat Plate Heat Pipe Using Screen Meshes (스크린 메쉬를 이용한 판형 히트 파이프의 개발)

  • Lee, Yong-Duck;Hong, Young-Ho;Kim, Hyun-Tae;Kim, Ku-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1506-1511
    • /
    • 2003
  • The present study proposes a new structure for a flat plate heat pipe which could embody a thin thickness, any shapes and high heat density a unit area. It is on the structure for the formation of vapor passages and the support of the case of the flat plate heat pipe. A screen mesh is used as the one. To verify the validity of the one, the flat plate heat pipe of 1.08mm thickness was made with a layer of the screen mesh with 14 and 100 mesh number respectively and tested. Here the screen mesh with 14 mesh number plays a role of the vapor passage and the support of the case and the screen mesh with 100 mesh number functions as the wick structure. T he results show that the screen mesh excellently carries out the function of the vapor passage and the support of the case.

  • PDF

Effect of Mesh Screen Device on Over-Expanded Supersonic Jet Noise (메쉬 스크린 장치가 과팽창 초음속 제트소음에 미치는 영향)

  • Kweon, Yong-Hun;Kim, Jae-Hyung;Lim, Chae-Min;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3150-3155
    • /
    • 2007
  • This paper describes an experimental work to investigate the effect of mesh screen device on the jet structure and acoustic characteristics of over-expanded supersonic jet. The mesh screen device is placed into the supersonic jet stream. In order to perturb mainly the initial jet shear layer, the hole is perforated in the central part of the mesh screen. The diameter of the perforated hole and the location of mesh screen device are varied. A Schlieren optical system is used to visualize the flow fields of supersonic jet without and with the mesh screen device. Pitot pressure measurement is carried out to obtain the pressure distribution in the jet flow. Acoustic measurement also is performed to obtain the OASPL and noise spectra. The results obtained show that the jet structure and the jet noise control effectiveness is strongly dependent upon the diameter of the perforated hole and the location of the mesh screen device in the jet stream. Provided that the mesh screen device is placed at the location to perturb effectively the initial shear layer, the present control method is effective in suppressing the supersonic jet noise.

  • PDF

Study on Supersonic Jet Noise Reduction Using a Mesh Screen (메쉬 스크린을 이용한 초음속 제트소음 저감법에 관한 실험적 연구)

  • Kweon, Yong-Hun;Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.377-381
    • /
    • 2006
  • This paper describes experimental work to control supersonic jet noise using a mesh screen that is placed at the nozzle exit plane. The mesh screen is a wire-gauze screen that is made of long stainless wires with a very small diameter. The nozzle pressure ratio is varied to obtain the supersonic jets which are operated in a wide range of over-expanded to moderately under-expanded jets. In order to perturb mainly the initial jet shear layer, the hole is perforated in the central part of the mesh screen. The hole size is varied to investigate the noise control effectiveness of the mesh screen. A schlieren optical system is used to visualize the flow fields of supersonic jet with and without the mesh screen device. Acoustic measurement is performed to obtain the OASPL and noise spectra. The results obtained show that the present mesh screen device leads to a substantial suppression of jet screech tones. The hole size is an important factor in reducing the supersonic jet noise. For over-expanded jets, the noise control effectiveness of the mesh screen appears more significant, compared to correctly and under-expanded jets

  • PDF

The Opening Size Change for Screen Tension (스크린 망사의 견장과 오프닝의 변화)

  • Jung, Gi-Young;Kang, Young-Reep
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • The 200mesh screen was tensioned and fixed on a frame. When applied tension to 5N and 10N per unit area, a side length of opening of the screen was 163.223${\mu}m$ and 168.224${\mu}m$, respective. But side length not tensioned was 158.879${\mu}m$. We knew that a side length of opening of the screen rarely changes with tension applied to the screen. The appearances that a side length of opening of the screen expand little are due to a decreasing diameter of thread by means of tension. In a thickness measurement of screen, While the high density mesh screen that had a lot of knots that crossed a line of latitude and longitude per unit area appeared a higher numerical value, the low density mesh screen that had a few knots appeared a low numerical value.

An Experimental Study on the Thermal Performance of a Flat-Ship Heat Pipe with Inner Grooves and Screen Mesh Cover (내부에 그루브와 스크린 메쉬를 갖는 평판 스트립형 히트파이프의 열성능에 대한 실험적 연구)

  • Park Soo Yong;Boo Joon Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.805-813
    • /
    • 2005
  • The thermal performance of a flat-strip heat pipe with inner grooves and the screen mesh cover was investigated experimentally. The heat pipes were made of 2024 aluminum alloy of which the dimensions were 30 (W) $\times$ 4 (T) $\times$ 150 (L) mm. The cross sectional dimensions of inner groove were 0.4$\times$0.9 mm and the space between grooves was 0.6 mm. To enhance the capillary force, foe screen meshes were attached to cover the grooved inner surface. In the grooved heat pipes without screen mesh cover, the maximum thermal load of 180 W (12 W/$cm^2$) was achieved for operating temperature below $130^{\circ}C$ at horizontal position. The heat pipes with screen mesh cover showed the thermal resistances less than one third of those without screen mesh cover, and showed less fluctuation in the thermal resistance values. Furthermore, the thermal performance of the former exhibited less dependence on the tilt angle and the fill charge ratio.

Theoretical Analysis of Heat Transportation Limitation by Porosity of Wick in Screen Mesh Wick Heat Pipe (스크린메쉬윅 히트파이프에서 윅의 기공율변화에 따른 열수송한계의 이론적 고찰)

  • Lee, Ki-Woo;Park, Ki-Ho;Chun, Won-Pyo;Lee, Wook-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1-6
    • /
    • 2003
  • The purpose of the present study is to investigate the capillary heat transportation limitation in heat pipe according to the change of screen mesh wick porosity. Diameter of pipe was 6 mm, and mesh numbers are 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of wick porosity and mesh number, the capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, and capillary heat transportation limitation are analyzed by theoretical design method of a heat pipe. As some results, the capillary heat transportation limitation in screen mesh wick heat pipe is largely affected by wick porosity and mesh number.

  • PDF

Modeling of Mesh Screen for Use in Surface Tension Tank Using Flow-3d Software (Flow-3d를 이용한 표면장력 탱크용 메시 스크린 모델링)

  • Kim, Hyuntak;Lim, Sang Hyuk;Yoon, Hosung;Park, Jeong-Bae;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.984-990
    • /
    • 2017
  • Mesh screen modeling and liquid propellant discharge simulation of surface tension tank were performed using commercial CFD software Flow-3d. $350{\times}2600$, $400{\times}3000$ and $510{\times}3600$ DTW mesh screen were modeled using macroscopic porous media model. Porosity, capillary pressure, and drag coefficient were assigned for each mesh screen model, and bubble point simulations were performed. The mesh screen model was validated with the experimental data. Based on the screen modeling, liquid propellant discharge simulation from PMD tank was performed. NTO was assigned as the liquid propellant, and void was set to flow into the tank inlet to achieve an initial volume flow rate of liquid propellant in $3{\times}10^{-3}g$ acceleration condition. The intial flow pressure drop through the mesh screen was approximately 270 Pa, and the pressure drop increased with time. Liquid propellant discharge was sustained until the flow pressure drop reached approximately 630 Pa, which was near the estimated bubble point value of the screen model.

  • PDF

Effects of Screen Packing Materials an Gas Discharge Dust Containing (함진기체의 배출에 미치는 금망 충진물의 영향)

  • 홍영호;함영민
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.120-126
    • /
    • 1993
  • This work was carried out to investigate the effects of solid mass flow rate, mean particle diameter and mesh number of screen packing material on minimum carrying velocity, which defined as the superficial gas velocity of the upper limit of chocking phenomenon. Vertical pneumatic conveying was studied on a 4.6cm 1. D. pipe, 180cm in length. Experiments were performed in both the empty and the screen-packed pipe. It was also examined the effect of superficial gas velocity, solid mass flow, mean particle diameter, and mesh number of packing material on pressure drop. Minimum carrying velocity in screen packed-pipe was lower than that in an empty pipe. besides minimum carrying velocity was decreased with increase in mesh number of screen packing material. The pressure drop In vortical packed-pipe was Increased with superficial gas velocity, mean particle diameter, and mesh number of screen packing material.

  • PDF