• 제목/요약/키워드: scratch test

검색결과 252건 처리시간 0.019초

나노 입자 첨가에 따른 도장막의 부착력 평가 (Effects of nano-particles additions on the adhesion propertis of coating layer)

  • 이현주;우성민;김호형;황태진;김양도
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.70-70
    • /
    • 2011
  • 표면처리는 전기적, 물리적, 화학적 처리방법 등을 통해 보호표면을 생성시킴으로서 재료의 외관미화, 내마모성, 전기절연, 전기전도성 부여 등의 폭넓은 목적을 달성시키고자 하는 일련의 조작을 말한다. 최근 스마트 휴대폰으로 대표되는 이동통신기기 산업의 빠른 성장으로 인하여 이들 기기를 보호하기 위한 표면 처리기술도 함께 발전하고 있다. 그중 대표적인 것이 나노기술을 융합한 보호막 도장기술이다. 나노입자를 분산하거나 나노상(phase)을 융합하여 제품의 표면에 보호막을 도장하는 기술이며, 그 주된 목적은 내 스크래치, 내 부식 등의 물리 화학적 보호기능을 수행하도록 층(layer)을 형성하는 것이다. 본 연구에서는 제조된 실리카 나노입자와 유기물을 사용하여 휴대폰 케이스에 도장막을 형성하였고, Scratch, Wear, hardness Test등의 분석을 통하여 유무기 하이브리드 도장막의 특성을 평가하였다.

  • PDF

Influence of processing parameters for adhesion strength of TiN films prepared by AIP technique

  • ;주윤곤;조동율;윤재홍;송기오
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.140-141
    • /
    • 2007
  • The arc ion plating (AIP) technique has been used widely for thin coating in the area of surface engineering. The TiN coating is important in the field of dies, cutting tools and other mechanical parts. When forming the TiN films by AIP technique, the processing parameters such as arc power, bias voltage, working pressure, temperature of substrate and pre-treatment affected the adhesion respectively. The results of scratch test revealed that the adhesion strength was influenced by arc power most strongly. And a sequence of the importance of each parameters has been obtained. The crystal structure and cross-section of TiN films are also be investigated.

  • PDF

윤활유 성질이 마모특성에 미치는 영향(제2보) (Effects of Tribological Characteristics on Lubricants Properties (The 2nd))

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.335-340
    • /
    • 2001
  • It was reviewed that the kinds of lubricating oil, viscosity, temperature and strength of materials affected the wear of the surface heat treatment. When lubricants is used under severe running conditions, their tribological characteristics are very important. We have studied the lubricating oil viscosity, kinds of additives and their amounts, and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. It was shown from the test results that wear is not greatly affected by the amount of ZnDTP (Zinc dialkyl dithio phosphate) antiwear agent, but EP (Extreme pressure) additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its temperature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the lower the scratch of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

Interface Characteristics of Ion Beam Mixed Cu/polyimide system

  • G.S.Chang;Jung, S.M.;Lee, Y.S.;Park, I.S.;Kang, H.J.;J.J.Woo;C.N.Whang
    • 한국진공학회지
    • /
    • 제4권S2호
    • /
    • pp.1-7
    • /
    • 1995
  • Cu(400$\AA$)/Polyimide has been mixed with 80 keV Ar+ and N2+from 1.0X1015ions/$\textrm{cm}^2$ to 2.0X1016 ions/$\textrm{cm}^2$. The changes of chemical bond and internal properties of sample are investigated by X-ray photoelectron spectroscopy(XPS). The quantitative adhesion strength is measured by using scratch test. The optimized mixing condition is that Cu/PI is irradiated with 80 keV N2+ at a dose of 1.0X1015 ions/$\textrm{cm}^2$, because N2+ ions can product more pyridine-like moiety, amide group, and tertiary amine moiety which are known as adesion promoters than Ar+.

  • PDF

플라즈마 화학증착법에 있어 모재의 표면조도가 TiN 박막층의 밀착력에 미치는 영향에 관하여 (Effect of Substrate Roughness on the Adhesion of TiN Deposition by PACVD)

  • 강해용;김문일
    • 열처리공학회지
    • /
    • 제4권2호
    • /
    • pp.27-37
    • /
    • 1991
  • The adhesion strength of TiN films to substrate(STC 3) steel has been studied using the scratch adhesion test. Before deposition, the substrates were mechanically polished and TiN films were deposited at different substrate temperature($480^{\circ}C-540^{\circ}C$). The chemical properties of TiN films were investigated by RBS, and EDS, and the physical properties were investigated by micro-hardness tester, SEM, and X-ray diffractometer. According to results of this study, the adhesion strength of TiN films increase with increasing the deposition temperature. The roughness of the polished substrates surface were measured with a profilometer. It was observed that, as a general rule, the adhesion strength of deposited TiN films increase with decreasing the substrates surface roughness.

  • PDF

ADHESION STUDIES OF MAGNETRON-SPUTTERED COPPER FILMS ON INCONEL SUBSTRATES

  • Lee, G.H.;Kwon, S.C.;Lee, S.Y.
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.410-415
    • /
    • 1999
  • The adhesion strength of sputtered copper films to Inconel substrates has been studied using the scratch test. The effects of substrate treatments before deposition such as chemical or ion bombardment etching were investigated by means of a mean critical load derived from a Weibull-like statistical analysis. It was found that the mean critical load was very weak unless the amorphous layer produced by mechanical polishing on the substrate surface was eliminated. Chemical etching in a nitric-hydrochloric acid bath was shown to have practically no effect on the enhancement of the adhesion. In contrast, the addition in this bath of nickel and copper sulphates allowed removal of the amorphous layer and an increase in the values of the mean critical load. However, it was observed that excessive chemical etching could cancel out the mean critical load enhancement. The results obtained in the case of ion bombardment etching pretreatments could be far higher than those obtained with chemical etching. Moreover, for a sufficiently long period of ion bombardment etching, the adhesion strength was so high that it was impossible to observe evidence of an adhesion failure.

  • PDF

Improved Adhesion of DLC Films by using a Nitriding Layer on AISI H13 Substrate

  • Park, Min-Seok;Kim, Dae-Young;Shin, Chang-Seouk;Kim, Wang Ryeol
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.307-314
    • /
    • 2021
  • Diamond-like carbon (DLC) is difficult to achieve sufficient adhesion because of weak bonding between DLC film and the substrate. The purpose of this study is to improve the adhesion between substrate and DLC film. DLC film was deposited on AISI H13 using linear ion source. To improve adhesion, the substrate was treated by dual post plasma nitriding. In order to define the mechanism of the improvement in adhesive strength, the gradient layer between substrate and DLC film was analyzed by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The microstructure of the DLC film was analyzed using a micro Raman spectrometer. Mechanical properties were measured by nano-indentation, micro vickers hardness tester and tribology tester. The characteristic of adhesion was observed by scratch test. The adhesion of the DLC film was enhanced by active screen plasma nitriding layer.

TiN 코팅된 고속도강과 합금공구강의 마멸거동 (Wear Behavior of TiN Coatings Deposited on High Speed Steel and Alloy Tool Steel)

  • 김석삼;서창민;박준목
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.705-712
    • /
    • 1995
  • The wear characteristics and wear mechanisms in TiN coating deposited on high speed steel and alloy tool steel by ion plating were investigated. Pin on V-block wear tester was used for a wear test method. The specimen was composed of three kinds of high speed steel and alloy tool steel which had different hardness by changing the heat treating condition. Three kinds of coating thickness were also applied to each specimen. Microscopic observation of worn surfaces was made by SEM. The scratch test of coating surface by the ion plating showed that critical load to break the coating interface was greater than 50N. The critical load increased with both substrate hardness and coating thickness. The wear resistance of TiN coated high speed steel became 10 times greater than that of non-coated ones. SEM observation showed that leading edge of contact was compressive and trailing edge was under maximum tensile stress and then surface cracking broke out perpendicular to sliding direction.

상압 플라즈마 표면처리를 통한 태양광모듈 커버글라스와 불소계 코팅의 응착력 향상 (Improved Adhesion of Solar Cell Cover Glass with Surface-Flourinated Coating Using Atmospheric Pressure Plasma Treatment)

  • 김태현;박우상
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.244-248
    • /
    • 2018
  • We propose a method for improving the reliability of a solar cell by applying a fluorinated surface coating to protect the cell from the outdoor environment using an atmospheric pressure plasma (APP) treatment. An APP source is operated by radio frequency (RF) power, Ar gas, and $O_2gas$. APP treatment can remove organic contaminants from the surface and improve other surface properties such as the surface free energy. We determined the optimal APP parameters to maximize the surface free energy by using the dyne pen test. Then we used the scratch test in order to confirm the correlation between the APP parameters and the surface properties by measuring the surface free energy and adhesive characteristics of the coating. Consequently, an increase in the surface free energy of the cover glass caused an improvement in the adhesion between the coating layer and the cover glass. After treatment, adhesion between the coating and cover glass was improved by 35%.

이온 플레이팅법으로 제조한 (Ti$_{1-x}$Cr$_{x}$)N 박막의 마모특성에 관한 연구 (Wear properties of (Ti$_{1-x}$Cr$_{x}$)N coatings deposited by ion-plating method)

  • 이광희;박찬홍;이정중
    • 한국표면공학회지
    • /
    • 제34권2호
    • /
    • pp.125-134
    • /
    • 2001
  • ($Ti_{1-x}$ $Cr_{x}$ )N coatings were deposited by an ion-plating method in a reactor with two separate metal sources, Ti and Cr. Ti was evaporated using an electron beam, while Cr evaporation was carried out by resistant heating. The Ti and Cr concentrations in the coatings were controlled by the Ti and Cr evaporation ratio. The coating hardness increased with increasing the Cr content(x) and showed a maximum value of 6,000 HK at around x=0.8. The critical load of the coatings, measured by the scratch test, was around 30 N. The wear resistance properties of the ($Ti_{1-x}$$Cr_{ x}$)N coatings were evaluated using a CSEM pin-on-disk type tribometer. A Cr-steel ball as well as a SiC ball, which had hardness values of 590 HK and 2,600 HK respectively, were used as the pin. After the wear test, the surface morphology, roughness and the concentration of the coatings were investigated, with the main focus being on the effect of wear debris and the transferred layer on the wear behavior.

  • PDF