• Title/Summary/Keyword: scratch detection

Search Result 39, Processing Time 0.022 seconds

Aberration Extraction Algorithm for LCD Defect Detection (대면적 LCD 결함검출을 위한 수차량 추출 알고리즘)

  • Ko, Jung-Hwan;Lee, Jung-Suk;Won, Young-Jin
    • 전자공학회논문지 IE
    • /
    • v.48 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.

LCD Defect Detection using Neural-network based on BEP (BEP기반의 신경회로망을 이용한 LCD 패널 결함 검출)

  • Ko, Jung-Hwan
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.

SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images

  • Do, Thanh-Nghi;Le, Van-Thanh;Doan, Thi-Huong
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, we propose training a support vector machine (SVM) model on top of deep networks for detecting Covid-19 from chest X-ray images. We started by gathering a real chest X-ray image dataset, including positive Covid-19, normal cases, and other lung diseases not caused by Covid-19. Instead of training deep networks from scratch, we fine-tuned recent pre-trained deep network models, such as DenseNet121, MobileNet v2, Inception v3, Xception, ResNet50, VGG16, and VGG19, to classify chest X-ray images into one of three classes (Covid-19, normal, and other lung). We propose training an SVM model on top of deep networks to perform a nonlinear combination of deep network outputs, improving classification over any single deep network. The empirical test results on the real chest X-ray image dataset show that deep network models, with an exception of ResNet50 with 82.44%, provide an accuracy of at least 92% on the test set. The proposed SVM on top of the deep network achieved the highest accuracy of 96.16%.

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.

Development of Structured Hybrid Illumination System and Optimum Illumination Condition Selection for Detection of Surface Defects on Silicon Wafer in Solar Cell (태양전지 실리콘 웨이퍼의 표면결함 검출을 위한 구조적 하이브리드 조명시스템의 개발 및 최적 조건 선정)

  • An, Byung-In;Kim, Gyung-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.505-512
    • /
    • 2012
  • In this study, an inspection system based on an optical scanning mechanism is developed for the inspection of silicon wafers in solar cells. In particular, a structured hybrid illumination system that can satisfy the illumination requirement for the detection of various defects is designed. In the hybrid illumination system, the optimum illumination conditions are selected by considering the design of experiment in master glass and silicon wafer. The illumination conditions available are B-high, BG-high, BR-high, and BGR-high for master glass and R-middle-B-medium for silicon wafers. By using the illumination conditions for silicon wafers, numerous surface defects like pinhole, scratch, and chipping, can be accurately detected. The hybrid illumination system is expected to be widely used for the inspection of silicon wafers in solar cells.

Sesamin induces A549 cell mitophagy and mitochondrial apoptosis via a reactive oxygen species-mediated reduction in mitochondrial membrane potential

  • Yang, Shasha;Li, Xiangdan;Dou, Haowen;Hu, Yulai;Che, Chengri;Xu, Dongyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.223-232
    • /
    • 2020
  • Sesamin, a lipid-soluble lignin originally isolated from sesame seeds, which induces cancer cell apoptosis and autophagy. In the present study, has been reported that sesamin induces apoptosis via several pathways in human lung cancer cells. However, whether mitophagy is involved in sesamin induced lung cancer cell apotosis remains unclear. This study, the anticancer activity of sesamin in lung cancer was studied by reactive oxygen species (ROS) and mitophagy. A549 cells were treated with sesamin, and cell viability, migration ability, and cell cycle were assessed using the CCK8 assay, scratch-wound test, and flow cytometry, respectively. ROS levels, mitochondrial membrane potential, and apoptosis were examined by flow cytometric detection of DCFH-DA fluorescence and by using JC-1 and TUNEL assays. The results indicated that sesamin treatment inhibited the cell viability and migration ability of A549 cells and induced G0/G1 phase arrest. Furthermore, sesamin induced an increase in ROS levels, a reduction in mitochondrial membrane potential, and apoptosis accompanied by an increase in cleaved caspase-3 and cleaved caspase-9. Additionally, sesamin triggered mitophagy and increased the expression of PINK1 and translocation of Parkin from the cytoplasm to the mitochondria. However, the antioxidant N-acetyl-L-cysteine clearly reduced the oxidative stress and mitophagy induced by sesamin. Furthermore, we found that cyclosporine A (an inhibitor of mitophagy) decreased the inhibitory effect of sesamin on A549 cell viability. Collectively, our data indicate that sesamin exerts lethal effects on lung cancer cells through the induction of ROS-mediated mitophagy and mitochondrial apoptosis.

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

Fruit's Defective Area Detection Using Yolo V4 Deep Learning Intelligent Technology (Yolo V4 딥러닝 지능기술을 이용한 과일 불량 부위 검출)

  • Choi, Han Suk
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.46-55
    • /
    • 2022
  • It is very important to first detect and remove defective fruits with scratches or bruised areas in the automatic fruit quality screening system. This paper proposes a method of detecting defective areas in fruits using the latest artificial intelligence technology, the Yolo V4 deep learning model in order to overcome the limitations of the method of detecting fruit's defective areas using the existing image processing techniques. In this study, a total of 2,400 defective fruits, including 1,000 defective apples and 1,400 defective fruits with scratch or decayed areas, were learned using the Yolo V4 deep learning model and experiments were conducted to detect defective areas. As a result of the performance test, the precision of apples is 0.80, recall is 0.76, IoU is 69.92% and mAP is 65.27%. The precision of pears is 0.86, recall is 0.81, IoU is 70.54% and mAP is 68.75%. The method proposed in this study can dramatically improve the performance of the existing automatic fruit quality screening system by accurately selecting fruits with defective areas in real time rather than using the existing image processing techniques.

Wafer bin map failure pattern recognition using hierarchical clustering (계층적 군집분석을 이용한 반도체 웨이퍼의 불량 및 불량 패턴 탐지)

  • Jeong, Joowon;Jung, Yoonsuh
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.407-419
    • /
    • 2022
  • The semiconductor fabrication process is complex and time-consuming. There are sometimes errors in the process, which results in defective die on the wafer bin map (WBM). We can detect the faulty WBM by finding some patterns caused by dies. When one manually seeks the failure on WBM, it takes a long time due to the enormous number of WBMs. We suggest a two-step approach to discover the probable pattern on the WBMs in this paper. The first step is to separate the normal WBMs from the defective WBMs. We adapt a hierarchical clustering for de-noising, which nicely performs this work by wisely tuning the number of minimum points and the cutting height. Once declared as a faulty WBM, then it moves to the next step. In the second step, we classify the patterns among the defective WBMs. For this purpose, we extract features from the WBM. Then machine learning algorithm classifies the pattern. We use a real WBM data set (WM-811K) released by Taiwan semiconductor manufacturing company.