• Title/Summary/Keyword: sclerotia

Search Result 198, Processing Time 0.027 seconds

Sclerotium Rot of Sponge Gourd Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 수세미오이 흰비단병)

  • Kwon, Jin-Hyeuk;Kim, Jin-Woo;Lee, Yong-Hwan;Shim, Hong-Sik
    • Research in Plant Disease
    • /
    • v.18 no.1
    • /
    • pp.54-56
    • /
    • 2012
  • Sclerotium rot of sponge gourd occurred at the experimental field of Gyeongsangnam-do Agricultural Research and Extension Services in August 2010. The infected fruits showed water-soaked and rot symptoms. White mycelial mats spread over lesions, and then sclerotia were formed on fruit and near soil line. The sclerotia were globoid in shape, 1-3 mm in size and white to brown in color. The optimum temperature for mycelial growth and sclerotia formation on PDA was $30^{\circ}C$ and the hyphal width was 4-8 ${\mu}m$. The typical clamp connections were observed in the hyphae of the fungus grown on PDA. On the basis of mycological characteristics, ITS rDNA sequence analysis, and pathogenicity to host plants, this fungus was identified as Sclerotium rolfsii Saccardo. This is the first report of sclerotium rot on sponge gourd caused by S. rolfsii in Korea.

Ecological Studies on the Occurrence of Rice False Smut (벼 이삭누룩병(病)의 발생(發生) 생태(生態)에 관(關)한 연구(硏究))

  • In, Moo Seong;Park, Jong Seong;Yu, Seung Hun
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.242-252
    • /
    • 1985
  • In order to get information on the ecology of rice false smut, germination ability and pathogenicity of sclerotia and chlamydospores of the pathogen, environmental conditions affecting the disease outbreak and varietal resistance have been investigated. 1. The degree of outbreak of rice false smut was higher in the upland rice in comparison with the paddy field rice in respect to the number of affected grains per ear, the size and weight of smut balls formed on affected grains as well as the ratio of sclerotial formation produced on smut balls. 2. Germination percentage and days required for germination of overwintered sclerotia placed on the soil surface in July were 81% and 19 days, respectively, while those of overwintered sclerotia treated in May were 60-70% and 41 days. Sclerotia placed on the soil surface or under 1 cm depth of the soil surface and incubated at $25-30^{\circ}C$ were germinated well, whereas those placed under 3 cm or 5 cm depth of the soil surface were not germinated at all. Germinability and stroma productivity of sclerotia were reduced when the sclerotia were cutted into small pieces. 3. The average number of stroma formed on a sclerotium was six and that of perithecia formed in a stroma was about 50 to 140. 4. Percentage of germination of chlamydospores on the yellow balls was very high and was decreased as the color of the balls being darken with maturation. 5. Panicle of rice plants were successfully infected by injection inoculation with suspention of ascospores and chlamydospores of the pathogen to the sheaths at the booting stages, while seeding infection by spraying with suspensions of chlamydospores was unsuccessful. 6. More number of infected grains was distributed on basal parts of an affected ear than that of infected ones distributed upper parts of the ear, when the affected ear was divided into five parts from its basal portion to the apical of the ear. 7. The occurrence of the disease was more severe in the late maturing varieties of rice in comparison with the early maturing varieties. 8. When the level of nitrogen applied was increased, the incidence of disease increased, and the infection percentage of the disease was increased as the transplanting date was delayed. 9. The weight of panicles and 1000 kernels and the ratio of ripenness were reduced, and the contamination degree of grains with chlamydospores were increased as the number of smut balls per panicle were increased.

  • PDF

Study on Prevention of Foreign Material Formation in Sclerotium of Poria cocos. (복령 균핵내 이물질 생성 방지 연구)

  • 장현유
    • Korean Journal of Plant Resources
    • /
    • v.13 no.2
    • /
    • pp.147-153
    • /
    • 2000
  • Experiments were carried out to determine the effects of culturing conditions DCI(Day required for Colonization after Inoculation), CR(Contamination Rate), MD(Mycelial Density), DPI(Day required for Primordial sclerotia formation after Inoculation), yields, and degree of the foreign materials formations in Poria cocos sclerotia. The upper and bottom side of wood logs were covered with gauze, rice hull and floating leaves, vinyl, or covering cloth in order to prevent foreign material formations in p. cocos. The major results were positive in the order of rice hull, floating leaf, vinyl, gauze, and covering cloth covered and dwindled. In case of the upper and bottom sides of the wood logs covered with rice hull, DCI required 50 days more when compared with the control group(45 days) and CR was 0%, while the control group showed 2% CR. MD was excellent in case of conventional methods as against control's. DPI required 17~20 days less when compared with the control group(82 days). Yields of p. cocos in case of the upper and bottom side of wood logs covered with rice hull were 5.87kg, which is 35.7% higher than that of the control group(4.33kg), and 5.62kg in the case of upper sides cover only(increased by 29.8% compared with control), and 5.59kg in the case of bottom side cover only(increased by 29.1% compared with control), and foreign materials were none. In a separate experiment, where the upper and bottom sides of wood logs were covered with rice hull to prevent the foreign material formation, the results were as follows : Sclerotia formation status and quality of P. cocos were effective in the order of 20cm, 40cm, and 60cm of buring depth and dwindled. In 20cm of burying depth, DCI was shortened by 5 days and CR was none, while the control group showed 2% CR. MD was remarkably fine at the mulched conditions. DPI was shortened by 20 days when compared with the control(62 days).

  • PDF

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF

Stem Rot of Strawberry Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Jeong, Sun-Ki;Son, Kyeng-Ae;Kim, Tae-Seung;Lee, Chun-Hee;Song, Geun-Woo;Park, Chang-Seuk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.129.1-129
    • /
    • 2003
  • A destructive stem rot of strawberry (cv. Akihime) occurred sporadically in farmers' fields around Daegok-Myeon, Jinju City, Gyeongnam province in Korea. The infected plants showed stem and crown rot, sometimes whole plant blighted. White mycelia spread over stems of infected clones and sclerotia formed on the old lesions near to soil surface. The fungus formed white colony on PDA and showed maximum mycelial growth and scleotial formation around 30$^{\circ}C$. The fungus usually have many narrow mycelial strands in the aerial mycelium and the width were 4.0∼10.0$\mu\textrm{m}$. The typical clamp connections were formed on the mycelium. The shape of sclerotia was globoid and 1.0∼2.8 mm in size. The fungus was isolated repeatedly from the infected tissues and identified as Sclerotium rolfsii. The fungus was inoculated to strawberry and confirmed its pathogenecity This is the first report on the stem rot of strawberry caused by Scierotium rolfsii in Korea.

  • PDF

First Report of Sclerotinia sclerotiorum Causing Sclerotinia Rot on Ixeridium dentatum in Korea

  • Park, Myung Soo;Kim, Young Guk;Lee, Sang Won;Park, Chun Geun;Kim, Yong Il;Lee, Eun Song;Chang, Jae Ki;An, Tae Jin
    • The Korean Journal of Mycology
    • /
    • v.45 no.4
    • /
    • pp.381-385
    • /
    • 2017
  • Sclerotinia rot was observed on Ixeridium dentatum cultivated as a succeeding crop in a garlic field in Seosan-si, Korea during the growing season in 2016 and 2017. Symptoms progressed from the initial irregular, water-soaked spots on main stems to wilting and eventually to plant death. White, cottony mycelia and black, irregular sclerotia formed on the basal stem and on soil surfaces. The optimal temperature of hyphal growth and sclerotia germination were $20^{\circ}C$ and $25^{\circ}C$, respectively. Sequence analysis of the internal transcribed spacer (ITS) regions revealed that the three strains isolated from Ixeridium dentatum are grouped with Sclerotinia sclerotiorum. Three strains were identified as Sclerotinia sclerotiorum based on morphological features, ITS sequence, and pathogenicity test. To the best of our knowledge, this work is the first report of Sclerotinia sclerotiorum causing sclerotinia rot on Ixeridium dentatum in Korea.

Morphological characteristics of fruit bodies and basidiospores of Wolfiporia extensa

  • Jo, Woo-Sik;Lee, Sung-Hak;Koo, Jinmo;Ryu, Songyi;Kang, Min-Gu;Lim, Soon-Young;Park, Seung-Chun
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.54-56
    • /
    • 2017
  • Wolfiporia cocos is a well-known traditional medicine in China, Japan, Korea, and other Asian countries owing to its numerous therapeutic properties. With the aim to determine the morphology and genetic characteristics of W. cocosten strains of W. cocos were cultivated in vitro, and subsequently, rapid amplification of polymorphic DNA was performed. To the best of our knowledge, this is the first study to examine the morphology of fruit bodies of W. cocos in Korea. W. cocos were cultured on PDA agar at different temperatures (12, 16, 20, 24, and $28^{\circ}C$) under 12-hour light (600 Lux) / 12-hour dark photoperiod condition for 1 month. Appearance of fruit body was the highest at $28^{\circ}C$ condition in all the strains investigated. Honeycomb-like structure on sclerotia was observed in Andong 01, Andong 02, Andong 03, KFRI 1104, KFRI 1105, KFRI 1106, KFRI 1107, KFRI 1108, and ASI 13007 strains of. The KFRI 1103 strain formed cosmos petal-like structure on sclerotia. The average size of basidiospores was recorded as $7.55{\mu}m$ in height and $3.35{\mu}$ in width.

First Report of Sclerotinia White Rot Caused by Sclerotinia nivalis on Panax ginseng in Korea

  • Cho, Hye Sun;Shin, Jeong-Sup;Kim, Jae-Hyun;Hong, Tae-Kyun;Cho, Dae-Hui;Kang, Je Yong
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • Sclerotinia white rot disease was observed on 5 and 6-year-old ginseng (Panax ginseng) roots in Hongchun, Cheorwon, and Yanggu, Gangwon Province, Korea from 2006 to 2010. Symptoms included a brownish watery soft rot of the roots, and black sclerotia were often found on the rotten roots. The causal agent of the disease was identified as Sclerotinia nivalis based on cultural characteristics and sequence analyses of the internal transcribed spacer region of rDNA and ${\beta}$-tubulin gene with 100% sequence similarity. Pathogenicity tests were performed on 2-year-old ginseng roots with mycelium plugs without wounds. A watery soft rot of the roots and black sclerotia were observed 10 days after inoculation. These symptoms were identical to those observed on naturally infected roots. The same fungus was re-isolated from the lesions induced by artificial inoculation. This is the first report of sclerotinia white rot caused by S. nivalis on P. ginseng in Korea.

Occurrence of Sclerotinia Rot of Leonurus sibiricus Caused by Sclerotinia sclerotiorum (Sclerotinia sclerotiorum에 의한 익모초 균핵병 밭생)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.8 no.2
    • /
    • pp.113-116
    • /
    • 2002
  • A sclerotinia rot of Leonurus sibiricus caused by Sclerotinia sclerotio겨m occurred severely in farmer's fields at Seosang-myon, Hamyang-gun, Gyeongnam Province, Korea in 2001. The typical symptoms of the disease were that leaves, stems or collar of the infected plants at first became darker green and then watery soft rotted, and white fluffy mycelia formed on the lesion developed into black sclerotia later, Sclerotia on the plant and PDA medium were globose to cylindrical or irregular in shape, and 0.8~10.3$\times$0.8~6.4 m in size. Aphothecia with numerous asci were cup-shape, and 0.6~1.2 cm in diameter, Asci with 8 spores were cylindrical, and 87~246$\times$4.6~21.6 $\mu\textrm{m}$ in size. Ascospores of one cell were hyaline, ellipsoid to ovoid in shape, and 10.2~14.6$\times$4.7~7.2 $\mu\textrm{m}$ in size. The range of temperature for mycelial growth was from 5 to 3$0^{\circ}C$, and the optimum was $25^{\circ}C$. This is the first report on the sclerotinia rot of L. sibiricus caused by Sclerotinia sclerotioum in Korea.

Characterization of Sclerotinia sclerotiorum Isolated from Paprika

  • Jeon, Young-Jae;Kwon, Hyuk-Woo;Nam, Ji-Sun;Kim, Seong-Hwan
    • Mycobiology
    • /
    • v.34 no.3
    • /
    • pp.154-157
    • /
    • 2006
  • A fungal isolate collected from infected paprika (Capsicum annuum var. grossum) was characterized as Sclerotinia sclerotiorum based on its ability of sclerotium formation, physiological and molecular properties. When the isolate was grown on potato dextrose agar, oatmeal agar, and malt extract agar, it grew most well on PDA. Optimal temperature and pH for its growth were $25^{\circ}C$ and pH 7, respectively. The fungal isolate produced sclerotia on PDA within 10 days, and the color and shape of the sclerotia were similar to those of S. sclerotiorum. The ITS rDNA regions including ITS1 and ITS2 and 5.8S sequences were amplified using ITS1F and ITS4 primers from the genomic DNAs of the paprika isolate and other known pathogenic S. sclerotiorum isolated from different crops in Korea, and their nucleotide sequences were determined. Sequence comparison analysis showed the ITS rDNA of the paprika isolate shares 100% sequence identity with those of S. sclerotiorum isolated from red pepper, lettuce and a S. sclerotiorum isolate registered in GenBank DNA database. Neighbor joining analysis based on the ITS rDNA sequence revealed the paprika isolate has very close phylogenetic relationships with known Sclerotinia sclerotiorum isolates. This is the first report that S. sclerotiorum has been found associated with paprika rot in paprika growing countries.