• Title/Summary/Keyword: scintillation detector

Search Result 141, Processing Time 0.024 seconds

Preparation of a thin film type of plastic scintillation detector for beta-ray detection (얇은 필름 형태의 베타선 측정용 플라스틱 섬광검출기 제조)

  • Seo, Bum-Kyoung;Kim, Gye-Hong;Woo, Zu-Hee;Oh, Won-Zin;Lee, Kune-Woo;Han, Myeong-Jin
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.495-499
    • /
    • 2005
  • Notwithstanding antipathies against radiation, radiations are extensively used in various fields with development of the radiation technology. In order to safely manage such radiation it is necessary for development of the radiation measurement materials. In this paper a thin film type of plastic scintillator using in the contamination measurement devices was prepared. The plastic organic scintillator was prepared by simple solvent methods. It was possible to prepare in easy way and in various forms. The polysulfone which has high transparency and solubility was chosen. As the radiation measurement scintillator, the optical properties and radiation detection abilities were estimated.

Development of an Organic Scintillator Sensor for Radiation Dosimetry using Transparent Epoxy Resin and Optical Fiber (투명 에폭시와 광섬유를 이용한 방사선량 측정용 유기섬광체 센서 개발)

  • Park, Chan-Hee;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • Remote detecting system for a radiation contamination using a plastic scintillator and an optical fiber was developed. Using a commercially available silica optical fiber and a plastic scintillator, we tested then for a real possibility as a remote monitoring detector. Also, a plastic scintillator was developed by itself, and evaluated as a radiation sensor. The plastic scintillator was made of epoxy resin, a hardener and an organic scintillation material. The mixture rate of the epoxy resin, hardener and organic scintillator was fixed by using their emission spectrum, transmittance, intensity etc. In this study, in order to decrease the light loss of an incomplete connection between an optical fiber and a scintillator, the optical fiber was inserted into the scintillator during the fabrication process. The senor used a plastic optical fiber and was estimated for its detection efficiency by an optic fiber's geometric factor.

  • PDF

A TiO2-Coated Reflective Layer Enhances the Sensitivity of a CsI:Tl Scintillator for X-ray Imaging Sensors

  • Kim, Youngju;Kim, Byoungwook;Kwon, Youngman;Kim, Jongyul;Kim, MyungSoo;Cho, Gyuseong;Jun, Hong Young;Thap, Tharoeun;Lee, Jinseok;Yoon, Kwon-Ha
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.256-260
    • /
    • 2014
  • Columnar-structured cesium iodide (CsI) scintillators doped with thallium (Tl) are frequently used as x-ray converters in medical and industrial imaging. In this study we investigated the imaging characteristics of CsI:Tl films with various reflective layers-aluminum (Al), chromium (Cr), and titanium dioxide ($TiO_2$) powder-coated on glass substrates. We used two effusion-cell sources in a thermal evaporator system to fabricate CsI:Tl films on substrates. The scintillators were observed via scanning electron microscopy (SEM), and scintillation characteristics were evaluated on the basis of the emission spectrum, light output, light response to x-ray dose, modulation transfer function (MTF), and x-ray images. Compared to control films without a reflective layer, CsI:Tl films with reflective layers showed better sensitivity and light collection efficiency, and the film with a $TiO_2$ reflective layer showed the best properties.

Fabrication, characterization, simulation and experimental studies of the ordinary concrete reinforced with micro and nano lead oxide particles against gamma radiation

  • Mokhtari, K.;Kheradmand Saadi, M.;Ahmadpanahi, H.;Jahanfarnia, Gh.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3051-3057
    • /
    • 2021
  • The concrete is considered as an important radiation shielding material employed widely in nuclear reactors, particle accelerators, laboratory hot cells and other different radiation sources. The present research is dedicated to the shielding properties study of the ordinary concrete reinforced with different weight fractions of lead oxide micro/nano particles. Lead oxide particles were fabricated by chemical synthesis method and their properties including the average size, morphological structure, functional groups and thermal properties were characterized by XRD, FESEM-EDS, FTIR and TGA analysis. The gamma ray mass attenuation coefficient of concrete composites has been calculated and measured by means of the Monte Carlo simulation and experimental methods. The simulation process was based on the use of MCNP Monte Carlo code where the mass attenuation coefficient (μ/ρ) has been calculated as a function of different particle sizes and filler weight fractions. The simulation results showed that the employment of the lead oxide filler particles enhances the mass attenuation coefficient of the ordinary concrete, drastically. On the other hand, there are approximately no differences between micro and nano sized particles. The mass attenuation coefficient was increased by increasing the weight fraction of nanoparticles. However, a semi-saturation effect was observed at concentrations more than 10 wt%. The experimental process was based on the fabrication of concrete slabs filled by different weight fractions of nano lead oxide particles. The mass attenuation coefficients of these slabs were determined at different gamma ray energies using 22Na, 137Cs and 60Co sources and NaI (Tl) scintillation detector. The experimental results showed that the HVL parameter of the ordinary concrete reinforced with 5 wt% of nano PbO particles was reduced by 64% at 511 keV and 48% at 1332 keV. Reasonable agreement was obtained between simulation and experimental results and showed that the employment of nano PbO particles is more efficient at low gamma energies up to 1Mev. The proposed concrete is less toxic and could be prepared in block form instead of toxic lead blocks.

The detection efficiency study of NaI(Tl) scintillation detector with the different numbers of SiPMs

  • Wang, Bao;Zhang, Xiongjie;Wang, Qingshan;Wang, Dongyang;Li, Dong;Xiahou, Mingdong;Zhou, Pengfei;Ye, Hao;Hu, Bin;Zhang, Lijiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2564-2571
    • /
    • 2022
  • SiPMs are generally coupled into whole columns in gamma energy spectrum measurement, but the relationship between the distribution of whole SiPM columns and the energy resolution of the measured energy spectra is rarely reported. In this work, ∅ 3 × 3 inch NaI scintillator is placed on an 8 × 8 SiPM array, and the energy resolution of the 137Cs peak at 662 keV corresponding to the γ-ray is selected as a reference. Each SiPM is switched to explore the influence of the number of SiPM arrays, distribution position, and reflective layer on the energy resolution of SiPMs. Results show that without coupling, the energy resolution is greatly improved when the number of SiPMs ranges from 4 to 32. However, after 32 slices (the area covered by SiPMs relative to the scintillator reaches 25.9%), the improvement in energy resolution and total pulse count is not obvious. In addition, the position of SiPMs relative to the scintillator does not exert much impact on the energy resolution. Results also indicate that by adding a reflective film (ESR), the energy resolution of the tested group increases by 10.38% on average. This work can provide a reference for the design and application of miniaturized SiPM gamma spectrometers.

The effect of zinc, iron and manganese content on gamma shielding properties of magnesium-based alloys produced using the powder metallurgy

  • Mesut Ramazan Ekici;Emre Tabar;Gamze Hosgor;Emrah Bulut ;Ahmet Atasoy
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3872-3883
    • /
    • 2024
  • This study investigates the effects of Zinc (Zn), Manganese (Mn), and Iron (Fe) additions on the microstructure, corrosion behaviour, biocompatibility, mechanical, and gamma-ray shielding properties of Magnesium (Mg) alloys prepared in various compositions using powder metallurgy (PM). The microstructure and mechanical properties of these alloys were analyzed using electron microscopes (SEM and FE-SEM) and X-ray diffraction (XRD) methods. The results showed positive changes in the material's structure when the percentage of zinc added to pure magnesium increased. It was observed that the material became ductile, and the ductile fracture increased when the zinc ratio increased. The gamma-ray shielding properties of newly produced Mg-based alloys have also been discussed since they have a high potential for use in space technologies. Radiation shielding measurements have been performed using a 3" × 3" NaI(Tl) scintillation detector NaI (Tl) gamma-ray spectrometer. The gamma-ray shielding parameters such as the linear attenuation coefficients (μl), mass attenuation coefficient (μm), effective atomic number (Zeff), half-value layer (HVL), and tenth-value layer (TVL) have been determined experimentally at photon energies of 0.511 MeV (emitted from a22Na radioactive point source) and 1.173 MeV and 1.332 MeV (emitting from a60Co radioactive point source). The obtained parameters have been compared to the theoretical results of the XCOM software, and a satisfactory agreement has been found. It can be said from the results that the Mg30Zn alloy has the best shielding properties among the produced materials.

Extensive analysis of several Indian and Yemeni soils' gamma-ray shielding characteristics: An experimental and simulation approach

  • Shamsan S. Obaid;M.I. Sayyed;A.S. Alameen;D.K. Gaikwad;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3558-3565
    • /
    • 2024
  • The linear attenuation coefficients (LAC) of four soils (Black cotton (S1), Sandy (S2), Clay (S3), and Sandy (S4)) samples were measured at photon energies released from radioisotopes Co57 (122 keV), Ba133 (356 keV), 22Na (511 and 1275 keV), Cs137 (662 keV), Mn54 (840 keV), and Co60 (1330 keV) using a gamma spectrometer includes a NaI (Tl) scintillation detector. The experimental measurements were confirmed utilizing the Monte Carlo N-particle transport code. The linear attenuation coefficient values enhanced from 0.256 cm-1 to 0.296 cm-1 (at Eγ of 122 keV), from 0.126 cm-1 to 0.142 cm-1 (at Eγ of 662 keV), and from 0.0938 cm-1 to 0.105 cm-1 (at Eγ of 1275 keV), raising the (Fe + Mn) concentration from 0.912 wt% to 11.214 wt%, as well as raising the soil samples density from 1.62 g/cm3 to 1.79 g/cm3. The study also shows an enhancement in the half value thickness, transmission factor, radiation protection efficiency and lead's equivalent thickness due to the enrichment of Fe + Mn concentrations within the studied soils. The results show that the Black cotton soil exhibits better shielding properties for γ-ray than the other soils.

The signal property and structure design of CsI:Na/a-Se for diagnostic x-ray imaging (진단 X선 영상을 위한 CsI:Na/a-Se 구조설계 및 신호특성)

  • Park, Ji-Koon;Heo, Ye-Ji;Park, Jeong-Eun;Park, Sang-Jin;Kim, Hyun-Hee;No, Ci-Chul;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.4
    • /
    • pp.35-38
    • /
    • 2009
  • Flat-panel x-ray detectors using a phosphor and photoconductor material have been used for application in various medical modalities. In this study, the monte carlo simulation, optical and x-ray response characteristics were investigated in the conversion structure obtained by a columnar CsI:Na scintillation layer with a photosensitive amorphous selenium layer. Firstly, from the measurement of luminescent spectrum of CsI:Na and absorption spectrum of a-Se layer, the signal conversion characteristics are analysed. And also, the x-ray sensitivity is measured and compared with conventional a-Se($500{\mu}m$) as a function of electrical field. From the experimental result, the x-ray sensitivities of the CsI:Na($180{\mu}m$)/a-Se($30{\mu}m$) detector and the a-Se($500{\mu}m$) detector were $7.31nC/mR-cm^{2}$ and $3.95nC/mR-cm^{2}$at an electric field of $10V/{\mu}m$, respectively.

  • PDF

Analysis of Gamma-ray Spectrum and Assessment of Corresponding Exposure Rate by Means of Response Matrix Method (Response Matrix에 의한 감마선(線) Spectrum 및 그 조사선량(照射線量) 해석(解析))

  • Kim, Seong-Kwan;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.3-14
    • /
    • 1986
  • A stud has been carried out for figuring out real photon spectrum from an observed gamma-ray spectrum by means of response matrix method, which is known one of the relatively convenient method for the estimation of exposure rate of a complex gamma ray field in comparison with graphical analysis and least square fitting of the measured spectrum. A 3'${\times}$3' cylindrical Nal(T1) scintillation detector in association with multichannel pulse height analyzer and six reference gamma ray sources covering the photon energy range of 0.05 to 2.0 MeV were used. In dividing the energy region for the construction of response matrix, two different approaches were attempted. One is dividing the entire energy region of interest into 20 bins, one of which corresponds to a width of 0.1 MeV to form $20{\times}20$ matrix, and another is dividing the 2 MeV region into 14 bins to form $14{\times}14$ matrix consists of $0.1(MeV)^{1/2}$ intervals assuming the resolution of the detector is dependent on square root of the incident photon energy. Inversion of thus constructed matrices was performed by a computor(P-E8/32) using the program attached to the end of this paper. The resultant exposure rates obtained by this method were in good agreement, within 10% with those calculated by ordinary formula widely used for a gamma-ray field of known energy and flux. It is concluded that the photen flux obtained by the response matrix constructed under the assumption of $E^{1/2}$ dependence is more realistic than that obtained by the matrix consist of identical energy bins in dosimetrical point of view.

  • PDF

Neutron Capture Resonance Energy Identification of Indium by Time-of-Flight Method (중성자 비행시간법을 이용한 인듐의 공명에너지 동정에 관한 연구)

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.403-408
    • /
    • 2012
  • Prompt gamma ray from the natural Indium sample was measured by using an assembly of BGO($Bi_4Ge_3O_{12}$) scintillation detectors in the neutron energy region from 1 to 300 eV. The assembly was composed of pieces of BGO. The spectrometer was composed geometrically as total energy absorption detector. 46-MeV electron linear accelerator which is located at Research Reactor Institute, Kyoto University used for neutron sources from photonuclear reaction. The measurement of the neutron capture resonances was performed to below neutron energy 1 keV, because of strong X-ray effect from photonuclear reaction in Ta target and short distance from the target to an assembly of detector. The distance of neutron flight path is $12.7{\pm}0.02m$. The large neutron capture resonances were measured from 1 to 400 eV. The energy in the capture resonance was compared with the evaluated values. The large resonances were seen in the present measurement. General agreement can be seen between the present measurement and the previous evaluated data in relevant energy region. In the present study, we measured the continues resonance structure above 1 keV neutron energy region. 91.49 eV new neutron capture resonance was found in present measurement.