• 제목/요약/키워드: scientific reasoning

검색결과 143건 처리시간 0.019초

초등학생들의 과학 글쓰기에 나타난 과학적 추론의 유형과 수준 (Scientific Reasoning Types and Levels in Science Writings of Elementary School Students)

  • 임옥기;김효남
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제37권4호
    • /
    • pp.372-390
    • /
    • 2018
  • The purpose of this research is to know the scientific reasoning ability of elementary students. In order to find it, 320 elementary students wrote a report about germination of the 700 or 2,000 years old seeds. Their writings were analyzed by scientific writing analysis frameworks, Scientific Reasoning Types and Scientific Reasoning Level Criteria developed by Lim (2018). Minto Pyramid Principles was used to show statements and relations of statements related to scientific reasoning. This paper showed scientific reasoning statements of elementary students about germination of seeds. The characteristics of scientific reasoning of elementary students were as follows. In the process of logical writing by the types of scientific reasoning, many students showed various characteristics and different levels. In the writings based on inductive reasoning, they did not distinguish between common features and differences of cases, and did not derive the rules based on common features and differences of the cases. In the writings based on deductive reasoning, there were cases where the major premise corresponding to the principle or rule was omitted and only the phenomenon was described, or the rule was presented but not connected with the case. In the writings based on abductive reasoning, the ability to selectively use the background knowledge related to the question situation was not sufficient, and borrowing of similar background knowledge, which was commonly used in other situations, was very rare.

과학적 추론 능력의 발달에서 전두엽연합령의 역할 (The Role of The Prefrontal Lobes in Scientific Reasoning)

  • 허명;;권용주
    • 한국과학교육학회지
    • /
    • 제17권4호
    • /
    • pp.525-540
    • /
    • 1997
  • The present study tested the hypothesis that maturation of the prefrontal lobes is a crucial factor determining the performance of scientific reasoning tasks, Functions of the prefrontal lobes, such as activating relevant information, sequential planning and monitoring, and inhibiting irrelevant information, are related thinking patterns with scientific reasoning. Therefore, we inferred the idea that the prefrontal lobes play an important role in scientific reasoning. To test the hypothesis. the present study investigated a prefrontal lobe patient's task solving procedures in scientific reasoning tasks and the correlation and regression analysis between a test of prefrontal lobe function and two scientific reasoning tasks, The perseverative errors in the Wisconsin Card Sorting Test(WCST) was used as a measure of the prefrontal lobe function, The Melinark Type Task and the Classroom Test of Scientific Reasoning were used as measures of scientific reasoning abilities. Ages and Group Embedded Figure Test were also used as measures of two alternative hypotheses, general maturation and field independency respectively. The prefrontal lobe patient showed a crucial deficiency in solving scientific reasoning tasks. In the tasks, the patient could not used the reasoning of If... and... then... therefore pattern. In correlation study, the perseveration errors of the WCST showed a significantly negative correlation with two scientific reasoning tasks. Multiple regression study also showed that the perseveration errors measured as a function of the prefrontal lobes have more contribution to scientific reasoning ability than contributions of alternative hypotheses. Therefore, the present study supported the hypothesis that prefrontal lobes play a crucial role in scientific reasoning ability, What function of the prefrontal lobes do play crucial role in scientific reasoning? The present study provided an explanation for the question, which inhibiting ability of the prefrontal lobes is responsible for the scientific reasoning ability, in a part at least. That is, perseverative tendency in task-solving procedures causes a deficiency of an ability to inhibit the wrong information to solve a task. The present study provided a possibility of neuropsychological approach in science education research. The present study also showed an importance of the prefrontal lobe development in the performance of scientific reasoning task.

  • PDF

Students Opportunities to Develop Scientific Argumentation in the Context of Scientific Inquiry: A Review of Literature

  • Flick, Larry;Park, Young-Shin
    • 한국지구과학회지
    • /
    • 제25권3호
    • /
    • pp.194-204
    • /
    • 2004
  • The purpose of this literature review is to investigate what kinds of research have been done about scientific inquiry in terms of scientific argumentation in the classroom context from the upper elementary to the high school levels. First, science educators argued that there had not been differentiation between authentic scientific inquiry by scientists and school scientific inquiry by students in the classroom. This uncertainty of goals or definition of scientific inquiry has led to the problem or limitation of implementing scientific inquiry in the classroom. It was also pointed out that students' learning science as inquiry has been done without opportunities of argumentation to understand how scientific knowledge is constructed. Second, what is scientific argumentation, then? Researchers stated that scientific inquiry in the classroom cannot be guaranteed only through hands-on experimentation. Students can understand how scientific knowledge is constructed through their reasoning skills using opportunities of argumentation based on their procedural skills using opportunities of experimentation. Third, many researchers emphasized the social practices of small or whole group work for enhancing students' scientific reasoning skills through argumentations. Different role of leadership in groups and existence of teachers' roles are found to have potential in enhancing students' scientific reasoning skills to understand science as inquiry. Fourth, what is scientific reasoning? Scientific reasoning is defined as an ability to differentiate evidence or data from theory and coordinate them to construct their scientific knowledge based on their collection of data (Kuhn, 1989, 1992; Dunbar & Klahr, 1988, 1989; Reif & Larkin, 1991). Those researchers found that students skills in scientific reasoning are different from scientists. Fifth, for the purpose of enhancing students' scientific reasoning skills to understand how scientific knowledge is constructed, other researchers suggested that teachers' roles in scaffolding could help students develop those skills. Based on this literature review, it is important to find what kinds of generalizable teaching strategies teachers use for students scientific reasoning skills through scientific argumentation and investigate teachers' knowledge of scientific argumentation in the context of scientific inquiry. The relationship between teachers' knowledge and their teaching strategies and between teachers teaching strategies and students scientific reasoning skills can be found out if there is any.

Exploring Reasoning Patterns of Students' Scientific Thinking, Inquiry Activities in Textbook, and Examination Items

  • Kim, Young-Shin;Kwon, Yong-Ju;Yang, Il-Ho;Chung, Wan-Ho
    • 한국과학교육학회지
    • /
    • 제23권4호
    • /
    • pp.309-318
    • /
    • 2003
  • Scientific reasoning is one of the main concerns in current science education. This study have tried to answer on the question whether Korean science education has the potential to help improve of students' ability to think scientifically. Therefore, the present study investigated the relationship between reasoning patterns evident in science textbook and science examination items, and students' scientific reasoning skills across grades in Korea. 1975 subjects (1022 females and 953 males) were administered in the Lawson's Test of Scientific Reasoning skills. Forty seven science textbooks and 240 assessment instrument were analyzed by several scientific reasoning keys. Scientific reasoning patterns were adopted from Lawson's classification which characterized the patterns as the empirical-inductive and the hypothetical-deductive. This study found that reasoning patterns evident in textbook analyses and assessment instrumental items do not evidentce the potential to stimulate the development of students' reasoning skill. In order to improve the students' abilities to think and achieve, higher levels of reasoning must be included in the science textbook and examination. Further, some of scientific reasoning processes, such as generating hypotheses, designing experiments, and logical prediction, were not found in science textbooks and test items in Korean secondary schools. This study also discussed the educational implication of these results and further studies about to develop student's reasoning ability.

초등학생들의 먹이 피라미드 예측 모형 구성에서 과학적 추론의 역할 (Role of Scientific Reasoning in Elementary School Students' Construction of Food Pyramid Prediction Models)

  • 한문현
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제38권3호
    • /
    • pp.375-386
    • /
    • 2019
  • This study explores how elementary school students construct food pyramid prediction models using scientific reasoning. Thirty small groups of sixth-grade students in the Kyoungki province (n=138) participated in this study; each small group constructed a food pyramid prediction model based on scientific reasoning, utilizing prior knowledge on topics such as biotic and abiotic factors, food chains, food webs, and food pyramid concepts. To understand the scientific reasoning applied by the students during the modeling process, three forms of qualitative data were collected and analyzed: each small group's discourse, their representation, and the researcher's field notes. Based on this data, the researcher categorized the students' model patterns into three categories and identified how the students used scientific reasoning in their model patterns. The study found that the model patterns consisted of the population number variation model, the biological and abiotic factors change model, and the equilibrium model. In the population number variation model, students used phenomenon-based reasoning and relation-based reasoning to predict variations in the number of producers and consumers. In the biotic and abiotic factors change model, students used relation-based reasoning to predict the effects on producers and consumers as well as on decomposers and abiotic factors. In the equilibrium model, students predicted that "the food pyramid would reach equilibrium," using relation-based reasoning and model-based reasoning. This study demonstrates that elementary school students can systematically elaborate on complicated ecology concepts using scientific reasoning and modeling processes.

'먹이 그물과 먹이 피라미드' 모형 구성에서 나타난 초등학생의 추론 유형 (Elementary Student's Reasoning Patterns Represented in Constructing Models of 'Food Web and Food Pyramid')

  • 한문현;김희백
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제31권1호
    • /
    • pp.71-83
    • /
    • 2012
  • The purpose of this study was to explore ecological concepts, epistemological reasoning and reasoning processes through constructing 'food web and food pyramid' in ecology. We conducted classes which involved a 'food web and food pyramid' for $6^{th}$ grade students. Each class is constructed of small groups to do modeling and epistemological reasoning through communication. The researcher had videotaped and recorded each class and have made transcription about classes. We analysed patterns of 'food web and food pyramid models' and reasoning processes according to scientific epistemology using transcription data and student outputs. As a result, students represented phenomenon-based reasoning, relation-based reasoning and model-based reasoning in scientific epistemology from their modeling. Students usually did relation-based reasoning and model-based reasoning in food web which explains ecological phenonenon, while they usually did model-based reasoning in food pyramid which expects ecological phenomenon. Student's reasoning can be limited when they have misconception of scientific knowledge and are limited by fragmentary knowledge. This represents that students has to do relation-based reasoning and model-based reasoning is beneficial in their ecological model. It also suggests that students need to define correct-conception related to ecological modeling(food web, food pyramid).

예비초등교사의 자유 탐구 활동에서 나타나는 추론 복잡성 분석 (Analysis on the Complexity of Scientific Reasoning during Pre-service Elementary School Teachers' Open-Inquiry Activities)

  • 정선희;최현동;양일호
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제30권3호
    • /
    • pp.379-393
    • /
    • 2011
  • The purpose of this study was to analyze the complexity of scientific reasoning during open inquiry activities of pre-service elementary school teachers. In this study, 6 pre-service elementary teachers who participated in open-inquiry activities were selected. The data of scientific reasoning during their inquiry process was collected from the video recording of reporting about inquiry process and results, their reports and researcher's notetaking. CSRI Matrix (Dolan & Grady, 2010) was used to analyze the complexity of participants' scientific reasoning. The result showed that the degree of the complexity of their scientific reasoning varied in participants. Particularly the low degree of the complexity of scientific reasoning presented in posing preliminary hypotheses, providing suggestions for future research, communicating and defending finding. Also, The more pre-service teachers' epistemology of inquiry are similar to that of scientists, the more complex scientific reasoning represents. This results suggest that teachers should impress on students the importance of doing the precedent study and providing suggestions for future research, and provide a place for communicating and defending findings.

한국과 미국 대학생들의 과학적 추론 능력에 대한 비교 연구 (A Comparative Study on Scientific Reasoning Skills in Korean and the US College Students)

  • 전우수;권용주
    • 한국과학교육학회지
    • /
    • 제19권1호
    • /
    • pp.117-127
    • /
    • 1999
  • 최근의 보고에 따르면 우리 나라 학생들은 학년이 높아질수록 과학적 수준은 반대로 떨어지는 경향을 보이고 있지만 고등학교 이후 집단의 과학적 추론능력에 대한 연구는 체계적으로 이루어지지 않고 있다. 특히 가설검정능력과 관련된 과학적 추론은 가장 고등한 인지기능의 하나로 여겨지고 있고, 또 창의적이고 비판적인 사고에 매우 중요하다고 보고되어 왔다. 따라서 본 연구는 우리나라 대학생들의 과학적 추론 능력을 조사하고, 이를 미국 대학생들의 과학적 추론 능력과 비교하여 분석하였다. 아울러 본 연구는 가설 검정능력이 과학적 추론능력의 다른 하위요소에 비해 고등한 추론기능이라는 가설도 검정하였다. 고등학교 이후의 과학적 추론에 대한 경향을 조사하기 위하여 본 연구는 한국의 대학생 774명과 미국의 대학생 568명에게 과학적 추론 검사를 실시하여서 비교 분석하였고, 이 자료를 토대로 가설검정능력이 과학적 추론의 다른 하위요소에 비해 고등한 추론이라는 가설도 검정하였다. 본 연구에 사용된 과학적 추론 검사는 보존논리, 비례논리, 변인통제, 확률논리, 상관논리, 그리고 가설검정기능에 관련된 127개의 과제로 구성되어 있다. 본 연구의 결과는 한국 대학생들이 비례 및 확률논리를 평가하는 과제에 대해서는 미국 학생들보다 월등하게 높은 접수를 기록하였고, 보존이나 변인통제, 그리고 상관논리를 평가하는 과제에 대해서는 반대의 경향을 나타내었다. 또한 가설검정 능력을 평가하는 문항에서는 양국 모두 다른 과학적 추론 과제에 비해서 뚜렷하게 낮은 점수를 보여주었다. 본 연구는 이들 결과에 대해서 본 연구의 목적과 관련해서 논의하였고 이의 교육적 적용에 대해서도 논의하였다.

  • PDF

The Effects of Children's Metastrategic Activities on Strategies to Control Variables at a Scientific Reasoning Task

  • Jang, Myoung-Duk;Yang, Il-Ho;Jeong, Jin-Woo
    • 한국지구과학회지
    • /
    • 제23권2호
    • /
    • pp.154-165
    • /
    • 2002
  • The purpose of this study was to examine the effects of metastrategic exercise on a scientific reasoning strategy to control variables, and investigate the developmental patterns in the strategy usage within a given period. Two groups composed of 90 fifth grade students engaged in a scientific reasoning task over six daily sessions. Additionally, one group engaged in metastrategic exercise on fictional students' strategies of controlling variables on the task, while the other spent equivalent time on an unrelated task. Based upon results of the study, the following conclusions can be drawn. First, the metacognitive exercise on the strategy to control variables has positive and long-standing effects on the strategy performance at the reasoning task. The exercise also takes effect of near-transfer. Taking into consideration only about sixty minutes of metastrategic practice, the results provide the validity of the activity in order to develop children's reasoning strategies. Second, in a scientific reasoning task, each child seems to go through one out of two developmental patterns in their usage of reasoning strategies: gradual change or fundamental change. Considering the ratio of pattern of fundamental change between the two groups, it is clear that the metacognitive exercise influences the developmental pattern of strategy usage.

실험 설계에 나타난 초등 예비교사의 과학적 추론의 특징: 지식과 추론의 상호작용 (Characterization of Pre-service Elementary Teachers' Scientific Reasoning in Experimental Design: Interaction between Knowledge and Reasoning)

  • 장병기
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제31권2호
    • /
    • pp.227-242
    • /
    • 2012
  • This research explores the scientific reasoning of pre-service elementary teachers in experimental design. The article focuses on pre-service teachers' responses to the questions in the worksheets which involve making their knowledge claims on extinguishing of a burning candle in a closed container, evaluating anomalous data, and designing experiment to test their ideas. Their responses are interpreted in terms of categories developed by Tytler and Peterson(2003, 2004). The interrelationship between conceptual knowledge and scientific reasoning is explored using the data. It is argued that coordination of ideas and evidence must be emphasized in the scientific investigations rather than fair test.