• Title/Summary/Keyword: science simulation

Search Result 10,960, Processing Time 0.037 seconds

Interface Development for Pre and Post processor on EDISON Platform Simulation System (EDISON 플랫폼 시뮬레이션 시스템에서 전처리 및 후처리기 연계를 위한 인터페이스 개발)

  • Kwon, Yejin;Jeon, Inho;Seo, Jerry H.;Lee, Jongsuk R.
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • The EDISON is a platform that supports numerical analysis for problem solving in computational science and engineering. We provide a cloud service for users, and provide an environment to access and execution of the simulation service on the web. For now, the EDISON platform provides simulation services for eight applied field on computational science engineering. Users can check the numerical analysis result by web in the computational science and engineering platform. In addition, various services such as community activity with other researchers, and the configuration of simulation environment by user 's needs can be provided. A representative service of the EDISON platform is a web-based simulation service that performs numerical analysis for problem solving of various computational science and engineering. Currently, EDISON platform provides workbench simulation service. It is the web-based simulation execution environment, and result analysis to provide simulation regardless of various personal computing resource or environment in each numerical analysis. In this paper, we build an interface for pre and post processor that can be used in conjunction with the workbench-based simulation service provided by EDISON platform. We provide a development environment with interface that is implemented by applying a pre and post processor optimized for the simulation service. According to simulation and execution are performed by linking the new workbench-based simulation service to the pre and post processor.

Simulator Output Knowledge Analysis Using Neural network Approach : A Broadand Network Desing Example

  • Kim, Gil-Jo;Park, Sung-Joo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1994.10a
    • /
    • pp.12-12
    • /
    • 1994
  • Simulation output knowledge analysis is one of problem-solving and/or knowledge adquistion process by investgating the system behavior under study through simulation . This paper describes an approach to simulation outputknowldege analysis using fuzzy neural network model. A fuzzy neral network model is designed with fuzzy setsand membership functions for variables of simulation model. The relationship between input parameters and output performances of simulation model is captured as system behavior knowlege in a fuzzy neural networkmodel by training examples form simulation exepreiments. Backpropagation learning algorithms is used to encode the knowledge. The knowledge is utilized to solve problem through simulation such as system performance prodiction and goal-directed analysis. For explicit knowledge acquisition, production rules are extracted from the implicit neural network knowledge. These rules may assit in explaining the simulation results and providing knowledge base for an expert system. This approach thus enablesboth symbolic and numeric reasoning to solve problem througth simulation . We applied this approach to the design problem of broadband communication network.

  • PDF

Construction and Service of a Web-based Simulation software management system for the Computational Science and Engineering (계산과학공학 분야를 위한 웹 기반 시뮬레이션 소프트웨어 관리 시스템 구축 및 서비스)

  • Jeon, Inho;Kwon, Yejin;Ma, Jin;Lee, Sik;Cho, Kum Won;Seo, Jerry
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.99-108
    • /
    • 2017
  • Open Science is evolving not only to share research results, but also to open the research process. We are developing the EDISON platform for the spread of open science in computational science and engineering. The EDISON platform provides online simulation services developed by computational science and engineering researchers. It also provides an environment for sharing source code, data, and related research publications. An effective simulation software registration management system is required for successful service on the EDISON platform. In this paper, we proposes a simulation software management system to provide online simulation service through EDISON platform. The proposed system allows the developer to register the simulation software on the EDISON platform without administrator intervention and effectively build a web-based simulation environment.

Ensuring Sound Numerical Simulation of Hybrid Automata

  • Hur, Yerang;Sim, Jae-Hwan;Kim, Je-Sung;Chai, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.2
    • /
    • pp.73-87
    • /
    • 2009
  • A hybrid system is a dynamical system in which states can be changed continuously and discretely. Simulation based on numerical methods is the widely used technique for analyzing complicated hybrid systems. Numerical simulation of hybrid systems, however, is subject to two types of numerical errors: truncation error and round-off error. The effect of such errors can make an impossible transition step to become possible during simulation, and thus, to generate a simulation behavior that is not allowed by the model. The possibility of an incorrect simulation behavior reduces con.dence in simulation-based analysis since it is impossible to know whether a particular simulation trace is allowed by the model or not. To address this problem, we define the notion of Instrumented Hybrid Automata (IHA), which considers the effect of accumulated numerical errors on discrete transition steps. We then show how to convert Hybrid Automata (HA) to IRA and prove that every simulation behavior of IHA preserves the discrete transition steps of some behavior in HA; that is, simulation of IHA is sound with respect to HA.

A Flexible and Expandable Representation Framework for Computational Science Data

  • Kim, Jaesung;Ahn, Sunil;Lee, Jeongchoel;Lee, Jongsuk Ruth
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • EDISON is a web-based platform that provides easy and convenient use of simulation software on high-performance computers. One of the most important roles of a computational science platform, such as EDISON, is to post-process and represent the simulation results data so that the user can easily understand the data. We interviewed EDISON users and collected requirements for post-processing and represent of simulation results, which included i) flexible data representation, ii) supporting various data representation components, and iii) flexible and easy development of view template. In previous studies, it was difficult to develop or contribute data representation components, and the view templates were not able to be shared or recycled. This causes a problem that makes it difficult to create ecosystems for the representation tool development of numerous simulation software. EDISON-VIEW is a framework for post-processing and representing simulation results produced from the EDISON platform. This paper proposes various methods used in the design and development of the EDISON-VIEW framework to solve the above requirements and problems. We have verified its usefulness by applying it to simulation software in various fields such as material, computational fluid dynamics, computational structural dynamics, and computational chemistry.

Framework for Component-based Modeling/Simulation of Discrete Event Systems

  • Cho, Young-Ik;Kim, Jae-Hyun;Kim, Tag-Gon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.484-484
    • /
    • 2001
  • The sophistication of current software applications results in the increasing cost fur software development time. The component-based software development framework is proposed to overcome the difficulty and time-consuming requirements by modularity and reusability. As is the general software case, a component-based simulation framework encourages the reusability of the real system model based on the modularity of the applied simulation methodology. This paper presents a component-based simulation environment that is based on the DEVS/COM run-time infrastructure. The DEVS (Discrete Event System Specification) formalism provides a formal modeling and simulation framework for the generic dynamic systems [1] and Microsoft's COM (Component Object Model) is one of the strongest competitor fur the component standard. The reusability by the DEVS/COM simulation environment saves model development time remarkably and component technology make simulator itself to be a subparts of real application.

  • PDF

VIBRATION SIGNAL ANALYSIS OF MAIN COOLANT PUMP FLYWHEEL BASED ON HILBERT-HUANG TRANSFORM

  • LIU, MEIRU;XIA, HONG;SUN, LIN;LI, BIN;YANG, YANG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.219-225
    • /
    • 2015
  • In this paper, a three-dimensional model for the dynamic analysis of a flywheel based on the finite element method is presented. The static structure analysis for the model provides stress and strain distribution cloud charts. The modal analysis provides the basis of dynamic analysis due to its ability to obtain the natural frequencies and the vibration-made vectors of the first 10 orders. The results show the main faults are attrition and cracks, while also indicating the locations and patterns of faults. The harmonic response simulation was performed to gain the vibration response of the flywheel under operation. In this paper, we present a Hilbert-Huang transform (HHT) algorithm for flywheel vibration analysis. The simulation indicated that the proposed flywheel vibration signal analysis method performs well, which means that the method can lay the foundation for the detection and diagnosis in a reactor main coolant pump.

Development of the vapor film thickness correlation in porous corrosion deposits on the cladding in PWR

  • Yuan Shen;Zhengang Duan;Chuan Lu ;Li Ji ;Caishan Jiao ;Hongguo Hou ;Nan Chao;Meng Zhang;Yu Zhou;Yang Gao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4798-4808
    • /
    • 2022
  • The porous corrosion deposits (known as CRUD) adhered to the cladding have an important effect on the heat transfer from fuel rods to coolant in PWRs. The vapor film is the main constituent in the two-phase film boiling model. This paper presents a vapor film thickness correlation, associated with CRUD porosity, CRUD chimney density, CRUD particle size, CRUD thickness and heat flux. The dependences of the vapor film thickness on the various influential factors can be intuitively reflected from this vapor film thickness correlation. The temperature, pressure, and boric acid concentration distributions in CRUD can be well predicted using the two-phase film boiling model coupled with the vapor film thickness correlation. It suggests that the vapor thickness correlation can estimate the vapor film thickness more conveniently than the previously reported vapor thickness calculation methods.

An Advanced Method of Simulation and Analysis for Electromagnetic Environment on the Mobile Receiver in a Shielded Anechoic Chamber

  • Kim, Jung-Hoon;Rhee, Joong-Geun
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.229-234
    • /
    • 2006
  • This paper presents an advanced method of simulation for EM(electromagnetic) environment that affects on mobile receivers. A new calibration algorithm in the process of simulation is introduced. With a proposed calibration method, the time required for simulation is reduced and this makes it possible to simulate a near-real time EM environment in a shielded anechoic chamber. EM environment data acquisition and logging techniques with GPS for simulation were developed.

Analysis of Computational Science and Engineering SW Data Format for Multi-physics and Visualization

  • Ryu, Gimyeong;Kim, Jaesung;Lee, Jongsuk Ruth
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.889-906
    • /
    • 2020
  • Analysis of multi-physics systems and the visualization of simulation data are crucial and difficult in computational science and engineering. In Korea, Korea Institute of Science and Technology Information KISTI developed EDISON, a web-based computational science simulation platform, and it is now the ninth year since the service started. Hitherto, the EDISON platform has focused on providing a robust simulation environment and various computational science analysis tools. However, owing to the increasing issues in collaborative research, data format standardization has become more important. In addition, as the visualization of simulation data becomes more important for users to understand, the necessity of analyzing input / output data information for each software is increased. Therefore, it is necessary to organize the data format and metadata for the representative software provided by EDISON. In this paper, we analyzed computational fluid dynamics (CFD) and computational structural dynamics (CSD) simulation software in the field of mechanical engineering where several physical phenomena (fluids, solids, etc.) are complex. Additionally, in order to visualize various simulation result data, we used existing web visualization tools developed by third parties. In conclusion, based on the analysis of these data formats, it is possible to provide a foundation of multi-physics and a web-based visualization environment, which will enable users to focus on simulation more conveniently.