• Title/Summary/Keyword: science problem solving process

Search Result 480, Processing Time 0.035 seconds

The Exploration of Thinking Characteristics of Elementary Science Gifted Children within Scientific Problem Solving (과학 문제 풀이 과정에서 나타난 초등 과학 영재들의 사고 특성 탐색)

  • Kim Eun-Jin
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.2
    • /
    • pp.179-190
    • /
    • 2006
  • While most previous studies have developed educational programs for science gifted children and have analyzed the differences between science gifted children and ordinary children using quantitative research methods, few have investigated the differences among the science gifted, especially in terms of the scientific thinking process. The present study was conducted to explore the thinking characteristics of the elementary science gifted according to the three scientific thinking process types during the scientific problem solving process. The study resulted in the collected of quantitative and qualitative data through tests and an interview with questions and scientific problems which required the use of one of the three scientific thinking processes. Ten elementary science gifted children served as interviewees. Two types as an opistemological basis for solving the problems are revealed on inductive thinking problems. Three types are on abductive thinking, and Three or Four types are on deductive. The results are expected to have an influence on the teaching and the evaluation of the elementary science gifted.

  • PDF

Effects of Forensic Science Program on Scientific Creative Problem-Solving Abilities of Gifted Students in Elementary School (과학수사 프로그램이 초등 영재의 과학 창의적 문제해결력에 미치는 효과)

  • Kang, A-Rah;Lee, Kil-Jae
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.3
    • /
    • pp.265-275
    • /
    • 2015
  • The purpose of this study was to develop forensic science program for the improvement of scientific creative problem-solving abilities in gifted elementary-school students. A program that consists of six sessions (18 hours) is developed in accordance with the CPS model, which has been already proven effective for the improvement of creative problem-solving abilities. This program was applied to sixth-grade 18 gifted students in an elementary school in Gyeonggi province. Examinations of scientific creative problem-solving abilities were performed before and after applying the program in order to determine its effect on gifted elementary students. A qualitative analysis of students' activity sheets, peer assessment and teacher's class journal was made in order to examine the process of improvement of students' scientific creative problem-solving abilities. The results of this study are as follows: First, forensic science program to enhance the scientific creative problem-solving abilities of gifted students was developed. Second, forensic science program is significantly effective in the improvement of scientific creative problem-solving abilities of gifted children of elementary school (p<.05). Third, in early stage of the class, a student, who showed the highest range of change in pre and post tests, revealed the trend of responding in a short answer type. In the late stage of the class, he revealed the capability of producing various creative ideas promptly. On the other hand, students belonging to the upper group of both pre and post test revealed the improvement of divergent thinking skills such as fluency, flexibility, and originality. Fourth, after class, the students responded that the forensic science program developed in this study intrigued the interests and curiosities, and helped them break away from fixed ideas.

A Study on Students' Thinking Processes in Solving Physics Problems (물리 문제 해결 과정에서의 학생들의 사고 과정에 관한 연구)

  • Park, Hac-Kyoo;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.1
    • /
    • pp.85-102
    • /
    • 1994
  • The purpose of this study was to analyze students' physics problem solving processes and to find the patterns of their problem spaces when high school and university students solved the physics problems. A total of 51 students in a high school and in two universities participated in this study. Their thinking processes in solving 5 physics problems on electric circuit were recorded by using 'thinking aloud' method and were transferal into protocols. 'The protocols were analyzed by the coding system of problem solving process. One of the major theoretical contributions of the computer simulation approach to problem solving is the idea of problem space. Such a concept of problem space was applied to physics problems on electric circuit in this study, and students' protocols were analyzed by the basic problem spaces which were made up from the item analysis by the researcher. The results are as follows: 1) On the average 4.0 test items among 5 ones were solved successfully by all subjects, and all of the items were solved correctly by only 19 persons among all of them. 2) In regard to the general steps of problem solving process, there was little difference for each item between the good solvers and the poor ones. But according to the degree of difficulty of task there was a good deal of difference. For a complex problem all of 4 steps were used by most of students, but for a simple one only 3 steps except evaluating step were used by most of them. 3) It was found in this study that most of students used mainly the microscopic approach, that is, a method of applying Ohm's law on electric circuit simply and immediately, not using the properties of electric circuits. And also it was observed that most of students used the soloing tom below, that is, a solving path in which they were the first to calculate physical Quantities of circuit elements, before they caught hold of the meaning of the given problem regardless of the degree of difficulty.

  • PDF

The Rise of Korean Innovation Policy for Social Problem-Solving: A Policy Niche for Transition?

  • Seong, Jieun;Song, Wichin;Lim, Hongtak
    • STI Policy Review
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • Technology supply has been the main thrust of the Korean government's science & technology policy, focusing on the development and acquisition of new technology in line with the catching-up strategy of economic growth and industrial development. However, new social or societal problems have become major government policy issues, heralding new innovation policy aimed to address them. Such new policy initiatives for social problem-solving present a niche where the existing system of government innovation policy process is challenged, including such processes as goal-setting, planning, implementation, project management, and evaluation. The rigidity of the existing institution of government innovation policy, however, still shapes the content and progression of innovation policy for social problem-solving. This study reviews Korean innovation policy for social problem-solving as a policy niche, and aims to clarify its challenges and opportunities. It uses a system transition framework to explain the emergence and evolution of the innovation policy niche in Korea. The main research question is to what extent and in what aspect the existing innovation policy regime shaped innovation policy for social problem-solving. The study examines the inertia of the current paradigm of innovation policies and R&D programs, and sheds light on the search for a distinctive identity for innovation policies that tackles social problems.

Development of Storytelling Program for Science Learning Utilizing Local Myths as Contents

  • Kang, Kyunghee
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.55-63
    • /
    • 2014
  • Existing science education that excludes narrative thinking impedes the understanding of the context of workbook content. The object of this research is to develop a storytelling-learning program based on narrative thinking to elevate learners' interest in science and expand their inventive problem-solving abilities. Following an analysis of the current Korean curriculum, eight types of storytelling materials that utilize local content were developed for grades 7-9. The learning program used quest storytelling and was designed such that learning activities such as investigation, discussion, and experimentation were included in the process of solving each quest. Learners experienced an interest in storytelling learning resulting from participation in this storytelling-learning program. Moreover, learners demonstrated inventive problem-solving abilities in the process of completing the stories. During the process of assembling the storytelling materials, the students interacted with enthusiasm and generated ideas. The teachers indicated a positive feedback to the storytelling program as a new attempt to stimulate learners' interests. In the future, with continuous development and application, storytelling-science-learning programs that base science learning on narrative thinking are expected to be successful.

Analysis of Genetics Problem-Solving Processes of High School Students with Different Learning Approaches (학습접근방식에 따른 고등학생들의 유전 문제 해결 과정 분석)

  • Lee, Shinyoung;Byun, Taejin
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.4
    • /
    • pp.385-398
    • /
    • 2020
  • This study aims to examine genetics problem-solving processes of high school students with different learning approaches. Two second graders in high school participated in a task that required solving the complicated pedigree problem. The participants had similar academic achievements in life science but one had a deep learning approach while the other had a surface learning approach. In order to analyze in depth the students' problem-solving processes, each student's problem-solving process was video-recorded, and each student conducted a think-aloud interview after solving the problem. Although students showed similar errors at the first trial in solving the problem, they showed different problem-solving process at the last trial. Student A who had a deep learning approach voluntarily solved the problem three times and demonstrated correct conceptual framing to the three constraints using rule-based reasoning in the last trial. Student A monitored the consistency between the data and her own pedigree, and reflected the problem-solving process in the check phase of the last trial in solving the problem. Student A's problem-solving process in the third trial resembled a successful problem-solving algorithm. However, student B who had a surface learning approach, involuntarily repeated solving the problem twice, and focused and used only part of the data due to her goal-oriented attitude to solve the problem in seeking for answers. Student B showed incorrect conceptual framing by memory-bank or arbitrary reasoning, and maintained her incorrect conceptual framing to the constraints in two problem-solving processes. These findings can help in understanding the problem-solving processes of students who have different learning approaches, allowing teachers to better support students with difficulties in accessing genetics problems.

Analysis of Creative Science Problem Solving Process of Elementary School Students (초등학생의 창의적 과학문제해결과정 분석)

  • Lee, Seul-Gi;Shin, Won-Sub;Lim, Chae-Sung
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.3
    • /
    • pp.395-405
    • /
    • 2019
  • The purpose of this study is to analyze the process of creative science problem solving (CSPS) in elementary school students. To do this, 6 graders (n=9) at a elementary school in Seoul were participated. In this study, fixed eye-tracker with 250 Hz sampling and observation camera were used. The results of this study, the students with higher ability to solve creative science problems had a slower saccade, and had more visual attention on core clues and a greater number of eye changes. Therefore, students with higher ability to solve creative science problems showed more effective eye movement and faster information processing to solve problems. The CSPS types of elementary students were classified as 'declarative knowledge type', 'procedural knowledge type', 'conditional knowledge type', 'knowledge lack type'. Because each type appears to be complementary, CSPS process for elementary students who have integrated the four types was devised. The results of this study can be used as basic data for understanding elementary school students' CSPS and will help to develop and guide creative science teaching and learning programs useful to elementary school students and science gifted students.

Effects of Social Capital on the Problem-solving Ability of Rural Communities in the Context of Developers (농촌마을 내 사회자본이 주민주도 문제해결에 미치는 영향 : 업무담당자들의 시각을 중심으로)

  • Kim, Jung-Tae
    • The Korean Journal of Community Living Science
    • /
    • v.25 no.1
    • /
    • pp.51-64
    • /
    • 2014
  • With a shift in the rural development process toward a bottom-up approach, the need to enhance the endogenous capacity of communities has become the core of rural development. In this regard, scholars have paid close attention to social capital to identify ways to facilitate endogenous rural development but focused mainly on relationships between social capital and local environment. That is, few studies have investigated the relationships between social capital and its various dimensions in the context of rural development initiatives. This study examines the effects of social capital on the problem-solving ability of community residents'rural development initiatives and assesses the types of social capital associated with such initiatives to propose optimal path for improving this ability. To distinguish between major dimensions of social capital, a questionnaire was developed by considering various stages of the rural development process. The survey considered a sample of 59 employees from public rural development institutions. According to the results, four paths were significant at the 5% level. Among these four paths, three set common goals. The effective channel was the path [common goals${\Rightarrow}$network${\Rightarrow}$cooperation${\Rightarrow}$problem-solving ability]. The key factor in improving problem-solving skills, the endogenous ability of community residents to facilitate rural development initiatives. The results suggest that governments should strengthen education and training programs to help residents set their common goals.

Analysis of Elementary Students' Visualization Process of Creative Problem Solving in Science (초등학생들의 창의적 과학 문제 해결 과정에서 나타나는 시각화 활동 분석)

  • Kim, Jisoo;Jang, Shinho
    • Journal of Korean Elementary Science Education
    • /
    • v.36 no.1
    • /
    • pp.73-84
    • /
    • 2017
  • Cultivating creativity is one of the goals in science education. Previous studies report that students use visualization while they solve the creative science problem and it looks helpful to make them think more. For this study three $6^{th}$ grade students were selected in the consideration of pre-test through the qualitative think-aloud method. The results show that even though students have many ideas in planning stage in problem solving, they appeared to visualize familiar and empirical ideas at first. So if teachers want to watch another creative ideas, they tended to give enough time to visualize many ideas. Students drew lines, circles, "X"marks to select or remove information during their problem solving works. They said these marks seem to be useful to understand question. However, removal marks sometimes turn out to block another chance to re-think. Also students did not have a chance to reflect what they did. It means that they lose the chance to do convergent thinking. The implications of this study include the importance of students' visualization works to facilitate their creative ideas and support their problem solving strategies. In this study, we discuss the meaningful messages for teachers who construct science classroom for creativity.

Algorithmic Framework for Business Process Innovation

  • Han Hyun-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.1142-1149
    • /
    • 2003
  • Various organizational factors effect successful implementation of IT enabled business transformation. Among them, the most critical success factor is deemed to overcoming change management problem. Lots of studies have been made on Implementation methodologies and business process formalizations to encourage organizational members to accept new business process changes. However, the logic or process redesign still depends on qualitative problem solving techniques mostly depending on basically human intuition such as brainstorming. cause-and-effect analysis. and so on. In this paper, we focused on developing analytic framework to design to-be business process structure. which can complement qualitative problem solving procedures. With effective use of IT as an enabler, we provide algorithmic framework applicable to designing various business process changes such as process automation, business process resequencing, and more radical process integration. The framework follows dynamic programming approach in the literature, which is based on the decision making paradigm of organizations to abstract business processes as quantitative decision models. As such, our research ran fill the gap of limited development of theory based analytic methodologies for business process design, by providing objective rationale to reach the consensus among the organizational members including senior management.

  • PDF