• Title/Summary/Keyword: science network

Search Result 13,182, Processing Time 0.054 seconds

Conceptual Design of a Remote Monitoring and Control System for Nuclear Power Plants

  • Lee Seung Jun;Kim Jong Hyun;Seong Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.243-250
    • /
    • 2003
  • Nuclear power plants (NPPs) will be highly connected network enabled systems in the future. Using the network and web enabled tools, NPPs will be remotely monitored by operators at any time from any place connected to the network via a general web browser. However, there will be two major issues associated with this implementation. The first is the security issue. Only the authorized persons need to be allowed to access the plant since NPP is a safety-critical system. However, the web technology is open to the public. The second is the network disturbance issue. If operators can not access the plant due to network disturbances, the plant will come into the out-of-control situation. Therefore, in this work, we performed a conceptual design of a web-based remote monitoring and control system (RMCS) considering these issues.

The Effect of NIC Buffer Size of Web Server on the Performance of LAN (웹 서버의 NIC 버퍼 사이즈가 LAN 성능에 미치는 영향)

  • Kim, Jin-Hee;Sin, Bum-Suk;Kwon, Kyung-Hee
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.260-264
    • /
    • 2003
  • Among many factors to affect the network performance, this paper analyses how the buffer size of NIC(Network Interface Card) can affect web server and LAN(Local Area Network). We use the ns-2 which is defacto network simulation tool to observe the changes in drop rate, throughput, RTT(Round Trip Time), effective throughput depending on varying buffer sizes. And we analyse the effect of NIC buffer size on the web traffic in Ethernet.

  • PDF

Database Security System for Information Protection in Network Environment

  • Jung, Myung-Jin;Lee, Chung-Yung;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.211-215
    • /
    • 2003
  • Network security should be first considered in a distributed computing environment with frequent information interchange through internet. Clear classification is needed for information users should protect and for information open outside. Basically proper encrypted database system should be constructed for information security, and security policy should be planned for each site. This paper describes access control, user authentication, and User Security and Encryption technology for the construction of database security system from network users. We propose model of network encrypted database security system for combining these elements through the analysis of operational and technological elements. Systematic combination of operational and technological elements with proposed model can construct encrypted database security system secured from unauthorized users in distributed computing environment.

  • PDF

Comprehensive Analysis and Evaluation of Mobile S-MAC Protocol in Wireless Sensor Network

  • Alanazi, Adwan Alownie
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.358-366
    • /
    • 2022
  • Wireless sensor networks (WSN) are becoming widely used in collecting and sensing information in different fields such as in the medical area, smart phone industry and military environment. The main concern here is reducing the power consumption because it effects in the lifetime of wireless sensor during commutation because it may be work in some environment like sensor in the battlefields where is not easy to change the battery for a node and that may decrease the efficiency of that node and that may affect the network traffic may be interrupted because one or more nodes stop working. In this paper we implement, simulate, and investigate S-MAC protocol with mobility support and show the sequence of events the sender and receiver go through. We tested some parameters and their impacts of on the performance including System throughput, number of packets successfully delivered per second, packet delay, average packet delay before successful transmission.

A MapReduce-based Artificial Neural Network Churn Prediction for Music Streaming Service

  • Chen, Min
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.55-60
    • /
    • 2022
  • Churn prediction is a critical long-term problem for many business like music, games, magazines etc. The churn probability can be used to study many aspects of a business including proactive customer marketing, sales prediction, and churn-sensitive pricing models. It is quite challenging to design machine learning model to predict the customer churn accurately due to the large volume of the time-series data and the temporal issues of the data. In this paper, a parallel artificial neural network is proposed to create a highly-accurate customer churn model on a large customer dataset. The proposed model has achieved significant improvement in the accuracy of churn prediction. The scalability and effectiveness of the proposed algorithm is also studied.

Breast Cancer Images Classification using Convolution Neural Network

  • Mohammed Yahya Alzahrani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.113-120
    • /
    • 2023
  • One of the most prevalent disease among women that leads to death is breast cancer. It can be diagnosed by classifying tumors. There are two different types of tumors i.e: malignant and benign tumors. Physicians need a reliable diagnosis procedure to distinguish between these tumors. However, generally it is very difficult to distinguish tumors even by the experts. Thus, automation of diagnostic system is needed for diagnosing tumors. This paper attempts to improve the accuracy of breast cancer detection by utilizing deep learning convolutional neural network (CNN). Experiments are conducted using Wisconsin Diagnostic Breast Cancer (WDBC) dataset. Compared to existing techniques, the used of CNN shows a better result and achieves 99.66%% in term of accuracy.

A holistic distributed clustering algorithm based on sensor network (센서 네트워크 기반의 홀리스틱 분산 클러스터링 알고리즘)

  • Chen Ping;Kee-Wook Rim;Nam Ji-Yeun;Lee KyungOh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.874-877
    • /
    • 2008
  • Nowadays the existing data processing systems can only support some simple query for sensor network. It is increasingly important to process the vast data streams in sensor network, and achieve effective acknowledges for users. In this paper, we propose a holistic distributed k-means algorithm for sensor network. In order to verify the effectiveness of this method, we compare it with central k-means algorithm to process the data streams in sensor network. From the evaluation experiments, we can verify that the proposed algorithm is highly capable of processing vast data stream with less computation time. This algorithm prefers to cluster the data streams at the distributed nodes, and therefore it largely reduces redundant data communications compared to the central processing algorithm.

Network Security Practices through Anonymity

  • Smitha, G R;Suprith C Shekar;Ujwal Mirji
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.155-162
    • /
    • 2024
  • Anonymity online has been an ever so fundamental topic among journalists, experts, cybersecurity professionals, corporate whistleblowers. Highest degree of anonymity online can be obtained by mimicking a normal everyday user of the internet. Without raising any flags of suspicion and perfectly merging with the masses of public users. Online Security is a very diverse topic, with new exploits, malwares, ransomwares, zero-day attacks, breaches occurring every day, staying updated with the latest security measures against them is quite expensive and resource intensive. Network security through anonymity focuses on being unidentifiable by disguising or blending into the public to become invisible to the targeted attacks. By following strict digital discipline, we can avoid all the malicious attacks as a whole. In this paper we have demonstrated a proof of concept and feasibility of securing yourself on a network by being anonymous.

PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid

  • He, Shiming;Zeng, Weini;Xie, Kun;Yang, Hongming;Lai, Mingyong;Su, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1510-1532
    • /
    • 2017
  • In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.

A quantitative assessment method of network information security vulnerability detection risk based on the meta feature system of network security data

  • Lin, Weiwei;Yang, Chaofan;Zhang, Zeqing;Xue, Xingsi;Haga, Reiko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4531-4544
    • /
    • 2021
  • Because the traditional network information security vulnerability risk assessment method does not set the weight, it is easy for security personnel to fail to evaluate the value of information security vulnerability risk according to the calculation value of network centrality, resulting in poor evaluation effect. Therefore, based on the network security data element feature system, this study designed a quantitative assessment method of network information security vulnerability detection risk under single transmission state. In the case of single transmission state, the multi-dimensional analysis of network information security vulnerability is carried out by using the analysis model. On this basis, the weight is set, and the intrinsic attribute value of information security vulnerability is quantified by using the qualitative method. In order to comprehensively evaluate information security vulnerability, the efficacy coefficient method is used to transform information security vulnerability associated risk, and the information security vulnerability risk value is obtained, so as to realize the quantitative evaluation of network information security vulnerability detection under single transmission state. The calculated values of network centrality of the traditional method and the proposed method are tested respectively, and the evaluation of the two methods is evaluated according to the calculated results. The experimental results show that the proposed method can be used to calculate the network centrality value in the complex information security vulnerability space network, and the output evaluation result has a high signal-to-noise ratio, and the evaluation effect is obviously better than the traditional method.