Protein contact map은 단백질 삼차구조에 대한 정보를 이차원의 이미지로 표현하는 방법의 하나로, 비교적 간략하지만 단백질 구조에 대한 핵심적 정보를 함축하고 있다. 이러한 단백질 구조를 바탕으로 단백질의 internal energy, solvation free energy, free energy 와 같은 열역학 함수를 도출할 수 있다. 본 연구에서는 이미지 인식에 대한 머신러닝 기법을 사용하여 단백질 구조를 함축하는 단백질의 contact map으로부터 단백질의 열역학적 함수를 예측하는 연구를 진행하였다. 단백질의 main-chain 간의 contact map, side-chain 간의 contact map, main-chain과 side-chain 간의 contact map 들로부터 단백질의 여러 가지 열역학적 함수를 예측하고자 했으며 최종적으로 Convolution Neural Network (CNN) 기법을 사용하여 단백질의 free energy를 ~18 kcal/mol의 범위에서 예측 가능함을 보였다. 본 연구를 바탕으로 단백질의 contact map과 열역학 함수 사이의 상관관계가 있으며, 머신러닝 기법을 사용하여 단백질 contact map으로부터 열역학적 함수를 예측하는 것이 가능함을 보였다.
국토지리정보원에서 제작하는 지도는 공공재적 성격을 지닌 재화로 제작원가를 공급가격으로 모두 회수할 수는 없다. 본 연구에서는 이러한 상황을 감안하여 지도제작원가를 산출하고, 이를 토대로 지도의 공공재적인 성격을 고려한 적정 지도가격을 산정하고자 한다. 이를 위하여 수치지도와 종이지도의 축척별, 형태별 제작원가를 계산하고, 지도공급가격을 결정하는 한편, 지도공급현황과 지도유통시장 분석을 수행하였다. 연구결과 두 가지 안을 제시하였다. 연구결과를 지도공급가격에 반영할 경우 인상율이 매우 크기 때문에 6년에 걸쳐 목표지도공급가격 까지 인상하는 대안 1(목표가 대비 30% 인상)과 3년 후에는 목표지도공급가격까지 인상하는 대안 2(목표가 대비 50% 인상)를 제시하였다.
급격한 토지이용의 변화가 진행되고 있는 수도권 인근의 고양시, 남양주시, 용인시를 대상으로 고해상도 영상과 수치지도를 활용하여 논, 밭, 시설재배지, 과수원의 면적과 형상, 이용 현황을 파악하기 위한 농경지 지도를 작성하여 기존 수치지도와 비교한 결과 기존 수치지도에 비해 농경지의 이용 현황을 보다 세부적으로 정확하게 분류할 수 있었다. 또한, 농경지 지도와 수치 지적도의 농경지 부분을 중첩하여 '07년 토지이용도로 갱신하고 '99년에 작성된 토지이용도와 비교한 결과 3개 시 모두 조사기간 동안 논 면적이 3,000~5,000 ha 정도 크게 감소한 것으로 나타났으며, 밭과 과수원도 논과 함께 주거지로 전용되면서 감소하는 추세였다. 그러나 집약적인 재배가 가능하여 고소득이 기대되고 다른 지목으로 변경이 용이한 시설재배지의 경우에는 면적이 비슷하거나 증가한 경향을 보였다. 향후 고해상도 영상을 활용한 농경지 지도의 확대 구축과 이를 활용한 토지이용도 제작은 토양 조사 등 각종 조사 사업의 최신 자료로 활용 될 수 있을 뿐 아니라, 정확한 경지면적 산출을 통해 농업통계 및 농업정책 자료로써 효율적인 경지관리에 활용될 수 있을 것으로 판단된다.
해외 소장 한국 고지도는 자료의 물리적 접근이 어려운 점과 고지도의 추상성 등으로 인해 연구하는데 제약이 있다. 따라서 서지사항이나 기술요소에 좀 더 자세하고 전문적인 특성이 반영되어 이를 통해 고지도 연구에 도움이 되는 정보가 제공되어야 한다. 본 연구는 한국고지도의 계통을 연구할 때 필요한 고지도의 요소를 해주신본 계통의 고지도를 바탕으로 분석하여 고지도 기술요소로 도출하였다. 그리고 이렇게 도출된 총 8개 영역의 56개 고지도 기술요소를 바탕으로 국내에 잘 알려지지 않은 해외 소재 주요 고지도인 프랑스국립도서관 소장 「영연도」에 적용한 후, 고지도 연구의 접근성과 활용성에 도움이 되는 고지도 기술요소 최종안을 제안하였다.
본 논문에서는 컬러 영상에서 배경의 복잡도와 객체의 위치에 관계없이 영상 내에 존재하는 중요 객체를 자동으로 추출하는 방법을 제안한다. 제안하는 방법은 중요 객체를 추출하기 위해 에지(edge) 정보와 색상(color) 정보를 이용한 특징 지도를 사용한다. 또한, 효과적인 객체 추출을 위해서 참조 지도(reference map)를 제안한다. 참조 지도를 생성하기 위해서는 영상에서 사람의 시각에 두드러지게 구분되는 영역을 표현하는 특징 지도(feature map)를 먼저 생성한다. 그런 다음, 특징 지도들을 효과적으로 결합하여 배경의 영향을 최소화 하면서, 중요 객체가 존재할 확률이 높은 영역들을 포함하는 참조 지도를 생성한다. 특징 지도를 생성하기 위해서는 밝기 차 정보를 나타내는 에지와 YCbCr 컬러와 HSV 컬러 공간에서의 색상 성분을 사용하며, 특징 지도에 대한 생성 방법은 영상 내에서 밝기차이와 색상차이에 의해서 나타나는 경계 부분을 추출하는 방법을 사용한다. 최종적으로 중요 객체가 존재하는 영역을 나타내기 위해서 참조 지도와 특징 지도들을 결합한 결합 지도(combination map)를 생성한다. 결합 지도는 중요 객체의 외곽선 정보만을 표현하기 때문에, 객체 전체를 표현할 수 있는 객체 후보 영역을 추출하는데, 이를 위해서는 객체 후보 영역을 추출하기 위해서 convex hull 알고리즘을 사용한다. Convex hull 알고리즘에 의해서 추출된 영역은 여전히 배경 부분을 포함하고 있으므로, 영상 분할 방법을 적용하여 배경을 제거한 후 영상에서의 중요 객체를 추출한다. 제안한 알고리즘의 성능을 실험적으로 확인한 결과, 평균적으로 84.3%의 정확율과 81.3%의 재현율의 성능을 보였다.
Ko, Jongwan;Utsumi, Yousuke;Hwang, Ho Seong;Dell'Antonio, Ian P.;Geller, Margaret J.;Yang, Soung-Chul;Kyeong, Jaemann
천문학회보
/
제39권2호
/
pp.45.2-45.2
/
2014
To measure the mass distribution of galaxy systems weak-lensing analysis has been widely used because it directly measures the total mass of a system regardless of its baryon content and dynamical state. However, the weak-lensing only provides a map of projected surface mass density. On the other hand, galaxy redshift surveys provide a map of the three-dimensional galaxy distribution. It thus can resolve the structures along the line of sight projected in the weak-lensing map. Therefore, the comparison of structures identified in the weak-lensing maps and in the redshift surveys is an important test of the issues limiting applications of weak-lensing to the identification of galaxy clusters. Geller et al. (2010) and Kurtz et al. (2012) compared massive clusters identified in a dense redshift survey with significant weak-lensing map convergence peaks. Both assessments of the efficiency of weak-lensing map for cluster identification did not draw a general conclusion, because the sample is so small. Thus, we additionally perform deep imaging observations of fields in a dense galaxy redshift survey that contain galaxy clusters at z~0.2-0.5, using CFHT Megacam.
This paper presents a new system to estimate the head pose of human in interactive indoor environment that has dynamic illumination change and large working space. The main idea of this system is to suggest a new morphological feature for estimating head angle from stereo disparity map. When a disparity map is obtained from stereo camera, the matching confidence value can be derived by measurements of correlation of the stereo images. Applying a threshold to the confidence value, we also obtain the specific morphology of the disparity map. Therefore, we can obtain the morphological shape of disparity map. Through the analysis of this morphological property, the head pose can be estimated. It is simple and fast algorithm in comparison with other algorithm which apply facial template, 2D, 3D models and optical flow method. Our system can automatically segment and estimate head pose in a wide range of head motion without manual initialization like other optical flow system. As the result of experiments, we obtained the reliable head orientation data under the real-time performance.
An efficient 3D SLAM (Simultaneous Localization and Map Building) method is developed for urban building environments using a tilted 2D LRF (Laser Range Finder), in which a 3D map is composed of perpendicular/horizontal planar polygons. While the mobile robot is moving, from the LRF scan distance data in each scan period, line segments on the scan plane are successively extracted. We propose an "expected line segment" concept for matching: to add each of these scan line segments to the most suitable line segment group for each perpendicular/horizontal planar polygon in the 3D map. After performing 2D localization to determine the pose of the mobile robot, we construct updated perpendicular/horizontal infinite planes and then determine their boundaries to obtain the perpendicular/horizontal planar polygons which constitute our 3D map. Finally, the proposed SLAM algorithm is validated via extensive simulations and experiments.
Journal of the Korean Data and Information Science Society
/
제27권3호
/
pp.609-619
/
2016
본 논문에서는 대용량 데이터를 처리 및 분석하기 위해 RHadoop 플랫폼에서 실제 데이터와 모의 실험 데이터를 가지고 K-평균 클러스터링을 구현하고, MapReduce의 컴바이너 사용여부에 따른 처리 속도를 비교하고자 한다. 또한, K-평균 클러스터링에서 최적의 군집수 결정방법을 MapReduce 프로그램으로 구현하여 실제 데이터에 적용하고자 한다. 그리고 제안된 RHadoop 플랫폼의 확장 가능성을 보이기 위해 실제 데이터에서 R의 기본 패키지에서 kmeans() 함수와 bigmemory 패키지 상에서 유용한 bigkmeans() 함수와 처리 속도를 비교하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.