• Title/Summary/Keyword: science, artificial intelligence

Search Result 1,482, Processing Time 0.027 seconds

An Predictive System for urban gas leakage based on Deep Learning (딥러닝 기반 도시가스 누출량 예측 모니터링 시스템)

  • Ahn, Jeong-mi;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose a monitoring system that can monitor gas leakage concentrations in real time and forecast the amount of gas leaked after one minute. When gas leaks happen, they typically lead to accidents such as poisoning, explosion, and fire, so a monitoring system is needed to reduce such occurrences. Previous research has mainly been focused on analyzing explosion characteristics based on gas types, or on warning systems that sound an alarm when a gas leak occurs in industrial areas. However, there are no studies on creating systems that utilize specific gas explosion characteristic analysis or empirical urban gas data. This research establishes a deep learning model that predicts the gas explosion risk level over time, based on the gas data collected in real time. In order to determine the relative risk level of a gas leak, the gas risk level was divided into five levels based on the lower explosion limit. The monitoring platform displays the current risk level, the predicted risk level, and the amount of gas leaked. It is expected that the development of this system will become a starting point for a monitoring system that can be deployed in urban areas.

  • PDF

System for Computation of Inclination Risk of Building Based on Linear Regression Using Gyro Sensor (자이로 센서를 활용한 선형회귀 기반 건물 기울기 위험도 산출 시스템)

  • Kim, Da-Hyun;Hwang, Do-Kyung;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.61-64
    • /
    • 2021
  • 2016, 2017년 경주와 포항에서 발생한 규모 5.4 이상의 지진 당시 건물에 많은 피해가 속출함에 따라 지진 발생 시 건물 안전에 관한 관심이 증가하고 있다. 이러한 이유로 지진 등의 재난 상황 시 건물의 위험도를 신속하게 판단할 수 있는 방법론이 필요한 실정이다. 본 논문에서는 지진 등의 재난 상황 시 건물 안전에 위협이 될 수 있는 건물 기울기에 대한 위험도를 자이로 센서 데이터에 기반해 산출하는 시스템을 제안한다. 본 논문에서는건물 기울어짐 데이터를 확보함에 어려움이 있어 모의 거동 환경을 구축하여 데이터를 수집 및 분석하였다. 제안된 시스템은 자이로 센서로부터 수집된 실시간 기울기 데이터를 Mean Filter를 통해 데이터 평탄화 및 선형화를 수행 후 머신러닝 기법중 하나인 선형 회귀 알고리즘을 적용해 건물 기울기를 추정한다. 이후 국토교통부에서 고시한 건물 기울기 위험도 산출표를 바탕으로 측정된 기울기의 위험도를 산출한다. 해당 시스템은 실제 지진 등의 재난 발생 시 실시간 건물 기울기 위험 판단을 통해 신속한 재난 의사 결정에 도움이 될 것으로 기대된다.

  • PDF

Gated Recurrent Unit based Prefetching for Graph Processing (그래프 프로세싱을 위한 GRU 기반 프리페칭)

  • Shivani Jadhav;Farman Ullah;Jeong Eun Nah;Su-Kyung Yoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.6-10
    • /
    • 2023
  • High-potential data can be predicted and stored in the cache to prevent cache misses, thus reducing the processor's request and wait times. As a result, the processor can work non-stop, hiding memory latency. By utilizing the temporal/spatial locality of memory access, the prefetcher introduced to improve the performance of these computers predicts the following memory address will be accessed. We propose a prefetcher that applies the GRU model, which is advantageous for handling time series data. Display the currently accessed address in binary and use it as training data to train the Gated Recurrent Unit model based on the difference (delta) between consecutive memory accesses. Finally, using a GRU model with learned memory access patterns, the proposed data prefetcher predicts the memory address to be accessed next. We have compared the model with the multi-layer perceptron, but our prefetcher showed better results than the Multi-Layer Perceptron.

  • PDF

Development of Robust Semantic Segmentation Modeling on Various Wall Cracks (다양한 외벽에 강인한 균열 구획화 모델 개발)

  • Lee, Soo Min;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.49-52
    • /
    • 2022
  • 건물 외벽에 발생하는 균열은 시설물 구조 안전에 영향을 미치며 그 크기에 따라 위험도가 달라진다. 이에 따라 전문검사관의 현장 점검을 통해 발생 균열 두께를 정밀하게 측정할 필요가 있고 최근에는 이러한 현장 안전점검에 인공지능을 도입하려는 추세다. 그러나 기존의 균열 데이터셋은 주로 콘크리트에만 한정되어 다양한 외벽에 강인한 모델을 구축하기 어렵고 균열 두께를 측정하기 위해 정확한 마스크(Mask) 정보가 필요하나 이를 만족하는 데이터셋이 부재하다. 본 논문에서는 다양한 외벽에 강인한 균열 구획화 모델을 목적으로 2,744장의 이미지를 촬영하고 매직 완드 기법으로 라벨링을 진행해 데이터셋을 구축 후, 이를 바탕으로 딥러닝 기반 균열 구획화 모델을 개발했다. UNet-ResNet50을 최종모델로 선정 및 개발 결과, 테스트 데이터셋에 대해 81.22%의 class IoU 성능을 보였다. 본 연구의 기술을 바탕으로 균열 두께를 측정하여 건축물 안전점검에 활용될 수 있기를 기대한다.

  • PDF

Prediction of Cognitive Impairment Using Blood Gene Expression Based on Machine Learning (혈액 유전자 발현을 이용한 기계학습 기반 인지장애 예측)

  • Lee, Seungeun;Zhou, Yu;Kang, Kyungtae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.61-62
    • /
    • 2022
  • 알츠하이머성 치매는 현존하는 치료법이 없어 경도인지장애 단계에서의 예방이 중요하다. 지금까지의 알츠하이머 연구는 대부분이 뇌영상 마커와 뇌척수액 마커에 집중되어 있었으며, 경도 인지 장애 단계에서의 탐색은 더욱 적었다. 이러한 점에서 혈액 유전자 발현을 이용한 경도 인지장애 단계 예측은 인지 능력에 따른 관련 유전자 식별과 접근 가능한 진단 및 치료 바이오 마커 탐색에 기여할 수 있다. 그러나 유전자 발현 데이터의 경우 환자 수에 비해 높은 차원을 가지기 때문에 과적합을 막고 질병 관련 유전자를 식별하기 위해서는 데이터에서의 의미 있는 차원만을 뽑아내는 차원 축소가 선행되야 한다. 본 연구는 유전자 발현데이터에서의 인지장애 분류를 위해 차원 축소기법과 신경망을 적용하여 인지 장애 정도를 예측하였다. 그 결과, Lasso 이용 차원축소와 신경망을 이용하여 97%의 정확도로 정상과 조기 경도 인지장애, 후기 경도 인지장애 환자를 분류 할 수 있었으며, 더 적은 차원에서도 분류가 가능했다. 이는 혈액 유전자 발현을 이용해 경도 인지장애 단계를 예측한 첫 번째 연구이며, 인지능력 저하에 따른 혈액 유전자 발현의 연관성을 확인하고 향후 조기 진단, 치료 표적 탐색에 기여한다.

  • PDF

Plan- and Context- Based Specification of Community Interactions (플랜 및 상황기반 커뮤니티 상호작용 규정)

  • Byun, Moo-Hong;Lee, Jae-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.416-420
    • /
    • 2006
  • 분산된 환경이 특징인 유비쿼터스 시대는 기존의 소프트웨어 개발 방법론과 다른 방법론을 필요로 하게 되었다. 이를 위해서 제안된 커뮤니티 컴퓨팅이라는 개념을 소개하겠다. 또한 커뮤니티 컴퓨팅을 구현하는 수단인 CVM에 대해서 설명하고 이를 개선한 CVM에 대해서 설명하겠다.

  • PDF

Graphical TopicMaps Editor(GTM Editor) (도식화된 토픽맵 편집기)

  • Ahn, Ki-Jin;Lee, Jae-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.289-293
    • /
    • 2006
  • 국내에서도 표준화 작업이 진행 중인 토픽맵은 분산된 정보와 지식의 관리를 지원하기 위한 국제 표준이다. 이 논문에서는 이클립스(Eclipse) 플랫폼의 플러그인 개발환경인 GMF를 이용하여 비교적 작은 도메인에 대한 토픽맵의 구조를 도식화된 방법으로 표현하고, 간편하고 직관적인 편집기능을 사용자에게 제공하며, 이러한 구조의 간단한 프로토타입 정보라 할 수 있는 Linear Topic Map Notation(LTM)을 만들어 내는 플러그 인을 소개할 것이다.

  • PDF