KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.4
/
pp.1090-1100
/
2024
While the incorporating ESG indicator is recognized as crucial for sustainability and increased firm value, inconsistent disclosure of ESG data and vague assessment standards have been key challenges. To address these issues, this study proposes an ambiguous text-based automated ESG rating strategy. Earnings Call Transcript data were classified as E, S, or G using the Refinitiv-Sustainable Leadership Monitor's over 450 metrics. The study employed advanced natural language processing techniques such as BERT, RoBERTa, ALBERT, FinBERT, and ELECTRA models to precisely classify ESG documents. In addition, the authors computed the average predicted probabilities for each label, providing a means to identify the relative significance of different ESG factors. The results of experiments demonstrated the capability of the proposed methodology in enhancing ESG assessment criteria established by various rating agencies and highlighted that companies primarily focus on governance factors. In other words, companies were making efforts to strengthen their governance framework. In conclusion, this framework enables sustainable and responsible business by providing insight into the ESG information contained in Earnings Call Transcript data.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.9
/
pp.2782-2804
/
2024
The integration of artificial intelligence technology with medicine has rapidly evolved, with increasing demands for quality of life. However, falls remain a significant risk leading to severe injuries and fatalities, especially among the elderly. Therefore, the development and application of computer vision-based fall detection technologies have become increasingly important. In this paper, firstly, the keypoint detection algorithm ViTPose++ is used to obtain the coordinates of human body keypoints from the camera images. Human skeletal feature maps are generated from this keypoint coordinate information. Meanwhile, human dense feature maps are produced based on the DensePose algorithm. Then, these two types of feature maps are confused as dual-channel inputs for the model. The convolutional gated recurrent unit is introduced to extract the frame-to-frame relevance in the process of falling. To further integrate features across three dimensions (spatio-temporal-channel), a dual-channel fall detection algorithm based on video streams is proposed by combining the Convolutional Block Attention Module (CBAM) with the ConvGRU. Finally, experiments on the public UR Fall Detection Dataset demonstrate that the improved ConvGRU-CBAM achieves an F1 score of 92.86% and an AUC of 95.34%.
The production of near- and off-shore fisheries in South Korea is decreasing due to rapid changes in the fishing environment, particularly including higher sea temperature in recent years. To improve the competitiveness of the fisheries, it is necessary to provide fish catch information that changes spatiotemporally according to the sea state. In this study, artificial intelligence models that predict the CPUE (catch per unit effort) of mackerel, anchovies, and squid (Todarodes pacificus), which are three major fish species in the near- and off-shore areas of South Korea, on a 15-km grid and daily basis were developed. The models were trained and validated using the sea surface temperature, rainfall, relative humidity, pressure,sea surface wind velocity, significant wave height, and salinity as input data, and the fish catch statistics of Suhyup (National Federation of Fisheries Cooperatives) as observed data. The 10-fold blind test results showed that the developed artificial intelligence models exhibited accuracy with a corresponding correlation coefficient of 0.86. It is expected that the fish catch models can be actually operated with high accuracy under various sea conditions if high-quality large-volume data are available.
Kiduk Kim;Kyungjin Cho;Ryoungwoo Jang;Sunggu Kyung;Soyoung Lee;Sungwon Ham;Edward Choi;Gil-Sun Hong;Namkug Kim
Korean Journal of Radiology
/
v.25
no.3
/
pp.224-242
/
2024
The emergence of Chat Generative Pre-trained Transformer (ChatGPT), a chatbot developed by OpenAI, has garnered interest in the application of generative artificial intelligence (AI) models in the medical field. This review summarizes different generative AI models and their potential applications in the field of medicine and explores the evolving landscape of Generative Adversarial Networks and diffusion models since the introduction of generative AI models. These models have made valuable contributions to the field of radiology. Furthermore, this review also explores the significance of synthetic data in addressing privacy concerns and augmenting data diversity and quality within the medical domain, in addition to emphasizing the role of inversion in the investigation of generative models and outlining an approach to replicate this process. We provide an overview of Large Language Models, such as GPTs and bidirectional encoder representations (BERTs), that focus on prominent representatives and discuss recent initiatives involving language-vision models in radiology, including innovative large language and vision assistant for biomedicine (LLaVa-Med), to illustrate their practical application. This comprehensive review offers insights into the wide-ranging applications of generative AI models in clinical research and emphasizes their transformative potential.
Artificial Intelligence (AI) technology has already penetrated deeply into our daily lives, and we live with the convenience of it anytime, anywhere, and sometimes even without us noticing it. However, because AI is imitative intelligence based on human Intelligence, it inevitably has both good and evil sides of humans, which is why ethical principles are essential. The starting point of this study is the AI principles for companies or organizations to develop products. Since the late 2010s, studies on ethics and principles of AI have been actively published. This study focused on AI principles declared by global companies currently developing various products through AI technology. So, we surveyed the AI principles of the Global 500 companies by market capitalization at a given specific time and collected the AI principles explicitly declared by 46 of them. AI analysis technology primarily analyzed this text data, especially LDA (Latent Dirichlet Allocation) topic modeling, which belongs to Machine Learning (ML) analysis technology. Then, we conducted a Delphi technique to reach a meaningful consensus by presenting the primary analysis results. We expect to provide meaningful guidelines in AI-related government policy establishment, corporate ethics declarations, and academic research, where debates on AI ethics and principles often occur recently based on the results of our study.
Kareem Kola Yusuff;Adigun Adebayo Ismail;Park Kidoo;Jung Younghun
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.95-95
/
2023
Common hydrological problems of developing countries include poor data management, insufficient measuring devices and ungauged watersheds, leading to small or unreliable data availability. This has greatly affected the adoption of artificial intelligence techniques for flood risk mitigation and damage control in several developing countries. While climate datasets have recorded resounding applications, but they exhibit more uncertainties than ground-based measurements. To encourage AI adoption in developing countries with small ground-based dataset, we propose data augmentation for regression tasks and compare performance evaluation of different AI models with and without data augmentation. More focus is placed on simple models that offer lesser computational cost and higher accuracy than deeper models that train longer and consume computer resources, which may be insufficient in developing countries. To implement this approach, we modelled and predicted streamflow data of the Asa River Watershed located in Ilorin, Kwara State Nigeria. Results revealed that adequate hyperparameter tuning and proper model selection improve streamflow prediction on small water dataset. This approach can be implemented in data-scarce regions to ensure timely flood intervention and early warning systems are adopted in developing countries.
Hyun, Mi Hwan;Lee, Hye Jin;Lim, Seok Jong;Lee, KangSan DaJeong
Journal of Information Science Theory and Practice
/
v.10
no.spc
/
pp.12-24
/
2022
This study attempted to investigate changes in collaboration structure for each stage of national Research and Development (R&D) in the artificial intelligence (AI) field through analysis of a co-author network for papers written under national R&D projects. For this, author information was extracted from national R&D outcomes in AI from 2014 to 2019. For such R&D outcomes, NTIS (National Science & Technology Information Service) information from the KISTI (Korea Institute of Science and Technology Information) was utilized. In research collaboration in AI, power function structure, in which research efforts are led by some influential researchers, is found. In other words, less than 30 percent is linked to the largest cluster, and a segmented network pattern in which small groups are primarily developed is observed. This means a large research group with high connectivity and a small group are connected with each other, and a sporadic link is found. However, the largest cluster grew larger and denser over time, which means that as research became more intensified, new researchers joined a mainstream network, expanding a scope of collaboration. Such research intensification has expanded the scale of a collaborative researcher group and increased the number of large studies. Instead of maintaining conventional collaborative relationships, in addition, the number of new researchers has risen, forming new relationships over time.
Artificial intelligence clouds help to efficiently develop the autonomous things integrating artificial intelligence technologies and control technologies by sharing the learned models and providing the execution environments. The existing autonomous things development technologies only take into account for the accuracy of artificial intelligence models at the cost of the increment of the complexity of the models including the raise up of the number of the hidden layers and the kernels, and they consequently require a large amount of computation. Since resource-constrained computing environments, could not provide sufficient computing resources for the complex models, they make the autonomous things violate time criticality. In this paper, we propose a digital twin software development framework that selects artificial intelligence models optimized for the computing environments. The proposed framework uses a load estimation DNN model to select the optimal model for the specific computing environments by predicting the load of the artificial intelligence models with digital twin data so that the proposed framework develops the control software. The proposed load estimation DNN model shows up to 20% of error rate compared to the formula-based load estimation scheme by means of the representative CNN models based experiments.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.516-520
/
2010
컴퓨터와 인간과의 상호작용에서 다양한 형태의 인터페이스에 대한 요구가 날로 커지고 있다. 그 가운데 실생활에서도 사물을 지칭하거나 의사소통의 수단으로 사용되는 손과 관련한 인터페이스에 대한 연구가 주목 받고 있다. 기존의 대부분의 연구들은 손을 입력 받으면 영상을 기반으로 손의 중심점을 찾아 그것의 위치를 인식하였는데 이는 물체에 의해 손이 가려진 것과 같이 잘못된 영상을 입력 받았을 때 원하는 결과를 얻지 못하는 상황을 야기할 수 있다. 본 논문은 이러한 점을 보완하기 위하여 손의 중심점을 찾을 때 방해 받는 물체에 덜 민감하게 반응하도록 칼만 필터를 적용하여 문제점을 개선할 수 있도록 하였다. 또한 결과의 정확도를 높일 수 있도록 손가락 끝점을 추출하여 칼만 필터의 매개변수에 반영시켜주었다. 그 결과 예기치 못한 상황이 발생했을 때에도 이것에 덜 민감하게 반응하면서 손의 위치를 비교적 정확하게 측정할 수 있었으며 시스템의 과정이 간단하여 실시간으로 응용하기에 적합한 것을 알 수 있었다.
Lim, Hoyeon;Chung, Seungeun;Jeong, Chi Yoon;Jeong, Hyun-Tae
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.761-764
/
2020
본 논문에서는 라이프로그 데이터를 기반으로 한 행동인식 결과로부터 일상생활의 활동유형을 분석하는 기술에 대해 제안한다. 실제 일상생활 중에 수집한 가속도 센서 데이터만을 이용하여 분석한 행동인식 결과를 정적-동적 행동으로 분류된 특징 벡터로 나타내었고, 이를 클러스터링하여 6개의 대표 활동유형으로 분류하였다. 50명의 사용자 데이터를 분석하여 정적-동적 활동의 비율에 따른 활동유형을 분류함으로써 실제 라이프로그 데이터로부터 일상생활 활동유형을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.