• Title/Summary/Keyword: school zones

Search Result 483, Processing Time 0.026 seconds

A Performance Analysis on a Chiller with Latent Thermal Storage According to Various Control Methods (잠열 축열식 칠러시스템의 제어 방식에 따른 성능 분석)

  • Kang, Byung Ha;Kim, Dong Jun;Lee, Choong Seop;Chang, Young Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.592-604
    • /
    • 2017
  • A chiller, having a thermal storage system, can contribute to load-leveling and can reduce the cost of electricity by using electricity at night. In this study, the control experiments and simulations are conducted using both conventional and advanced methods for the building cooling system. Advanced approaches, such as the "region control method", divide the control region into five zones according to the size of the building load, and determines the cooling capacities of the chiller and thermal storage. On the other hand, the "dynamic programming method" obtains the optimal cooling capacities of the chiller and thermal storage by selecting the minimum-cost path by carrying out repetitive calculations. The "thermal storage priority method" shows an inferior chiller performance owing to the low-part load operation, whereas the chiller priority method leads to a high electric cost owing to the low utilization of thermal storage and electricity at night. It has been proven that the advanced control methods have advantages over the conventional methods in terms of electricity consumption, as well as cost-effectiveness. According to the simulation results during the winter season, the electric cost when using the dynamic programming method was 6.5% and 8.9% lower than that of the chiller priority and the thermal storage priority methods, respectively. It is therefore concluded that the cost of electricity utilizing the region control method is comparable to that of the dynamic programming method.

Risk free zone study for cylindrical objects dropped into the water

  • Xiang, Gong;Birk, Lothar;Li, Linxiong;Yu, Xiaochuan;Luo, Yong
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.377-400
    • /
    • 2016
  • Dropped objects are among the top ten causes of fatalities and serious injuries in the oil and gas industry (DORIS, 2016). Objects may accidentally fall down from platforms or vessels during lifting or any other offshore operation. Proper planning of lifting operations requires the knowledge of the risk-free zone on the sea bed to protect underwater structures and equipment. To this end a three-dimensional (3D) theory of dynamic motion of dropped cylindrical object is expanded to also consider ocean currents. The expanded theory is integrated into the authors' Dropped Objects Simulator (DROBS). DROBS is utilized to simulate the trajectories of dropped cylinders falling through uniform currents originating from different directions (incoming angle at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, and $270^{\circ}$). It is found that trajectories and landing points of dropped cylinders are greatly influenced by the direction of current. The initial conditions after the cylinders have fallen into the water are treated as random variables. It is assumed that the corresponding parameters orientation angle, translational velocity, and rotational velocity follow normal distributions. The paper presents results of DROBS simulations for the case of a dropped cylinder with initial drop angle at $60^{\circ}$ through air-water columns without current. Then the Monte Carlo simulations are used for predicting the landing point distributions of dropped cylinders with varying drop angles under current. The resulting landing point distribution plots may be used to identify risk free zones for offshore lifting operations.

Seismic risk assessment of concrete-filled double-skin steel tube/moment-resisting frames

  • Hu, Yi;Zhao, Junhai;Zhang, Dongfang;Zhang, Yufen
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.249-259
    • /
    • 2018
  • This paper aims to assess the seismic risk of a plane moment-resisting frames (MRFs) consisting of concrete-filled double skin steel tube (CFDST) columns and I-section steel beams. Firstly, three typical limit performance levels of CFDST structures are determined in accordance with the cyclic tests of seven CFDST joint specimens with 1/2-scaled and the limits stipulated in FEMA 356. Then, finite element (FE) models of the test specimens are built by considering with material degradation, nonlinear behavior of beam-column connections and panel zones. The mechanical behavior of the concrete material are modeled in compression stressed condition in trip-direction based on unified strength theory, and such numerical model were verified by tests. Besides, numerical models on 3, 6 and 9-story CFDST frames are established. Furthermore, the seismic responses of these models to earthquake excitations are investigated using nonlinear time-history analyses (NTHA), and the limits capacities are determined from incremental dynamic analyses (IDA). In addition, fragility curves are developed for these models associated with 10%/50yr and 2%/50yr events as defined in SAC project for the region on Los Angeles in the Unite State. Lastly, the annual probabilities of each limits and the collapse probabilities in 50 years for these models are calculated and compared. Such results provide risk information for the CFDST-MRFs based on the probabilistic risk assessment method.

Alloy Design and Properties of Ni based Superalloy LESS 1: I. Alloy Design and Phase Stability at High Temperature (Ni기 초내열 합금 LESS 1의 합금설계 및 평가: I. 합금 설계 및 고온 상 안정성 평가)

  • Youn, Jeong Il;Kang, Byung Il;Choi, Bong Jae;Kim, Young Jig
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.215-225
    • /
    • 2013
  • The alloys required for fossil power plants are altered from stainless steel that has been used below $600^{\circ}C$ to Ni-based alloys that can operate at $700^{\circ}C$ for Hyper Super Critical (HSC) steam turbine. The IN740 alloy (Special Metals Co. USA) is proposed for improved rupture strength and corrosion resistance at high temperature. However, previous studies with experiments and simulations on stable phases at about $700^{\circ}C$ indicated the formation of the eta phase with the wasting of a gamma prime phase, which is the most important reinforced phase in precipitation hardened Ni alloys, and this resulted in the formation of precipitation free zones to decrease the strength. On the basis of thermodynamic calculation, the new Ni-based superalloy named LESS 1 (Low Eta Sigma Superalloy) was designed in this study to improve the strengthening effect and structure stability by depressing the formation of topologically close packed phases, especially sigma and eta phases at high temperature. A thermal exposure test was carried out to determine the microstructure stability of LESS 1 in comparison with IN740 at $800^{\circ}C$ for 300 hrs. The experimental results show that a needle-shaped eta phase was formed in the grin boundary and it grew to intragrain, and a precipitation free zone was also observed in IN740, but these defects were entirely controlled in LESS 1.

Analysis of Ecodiversity as the Foundation for Conserving Biodiversity and Its Restoration Strategy (생물다양성을 보존하기 위한 토대로서 생태다양성 분석 및 복원 전략)

  • Lim, Bong Soon;Kim, Dong Uk;Kim, A Reum;Seol, Jae Won;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.408-426
    • /
    • 2020
  • This study aims to establish the national strategy for biodiversity conservation by analyzing the current status of ecodiversity as the foundation of biodiversity conservation. Furthermore, this study has another purpose of preparing the measures for conservation and restoration of biodiversity. Ecodiversity was discussed as the basis for conserving biodiversity. Five climate zones and 14 climatic regions, eight plant geographic regions, three massifs and major geologic series, horizontal and vertical topographic conditions, 16 ecoregions, major ecosystems including forest, river and streams, wetlands, coast and marine, agriculture, and urban esosystems, and land use types were discussed as the element of the ecodiversity. In terms of biodiversity conservation, the actual conditions of each ecological unit were reviewed and measures were proposed to reduce biodiversity loss. Destruction and fragmentation of habitat, poor ecosystem management due to socioeconomic changes, the effects of exotic species and chemicals, and climate change were discussed as the major factors causing biodiversity loss. Systematic monitoring based on scientific principles and ecological restoration based on those monitoring results were recommended as measures for biodiversity conservation.

Thermo-mechanical properties in bending of a multizone nickel-titanium archwire: A retrieval analysis

  • Panagiotis Roulias;Ioulia-Maria Mylonopoulou;Iosif Sifakakis;Christoph Bourauel;Theodore Eliades
    • The korean journal of orthodontics
    • /
    • v.53 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • Objective: This study aimed to compare the mechanical and thermal properties in the anterior and posterior segments of new and retrieved specimens of a commercially available multizone superelastic nickel-titanium (NiTi) archwire. Methods: The following groups of 0.016 × 0.022-inch Bioforce NiTi archwires were compared: a) anterior and b) posterior segments of new specimens and c) anterior and d) posterior segments of retrieved specimens. Six specimens were evaluated in each group, by three-point bending and bend and free recovery tests. Bending moduli (Eb) were calculated. Furthermore, the new specimens were evaluated with scanning electron microscopy/energy-dispersive X-ray spectrometry. A multiple linear regression model with a random intercept at the wire level was applied for data analysis. Results: The forces in the posterior segments or new specimens were higher than those recorded in the anterior segments or retrieved specimens, respectively. Accordingly, Eb also varied. Higher austenite start and austenite finish (Af) temperatures were recorded in the anterior segments. No statistically significant differences were found for these temperatures between retrieved and new wires. The mean elemental composition was (weight percentage): Ni, 52.6 ± 0.5; Ti, 47.4 ± 0.5. Conclusions: The existence of multiple force zones was confirmed in new and retrieved Bioforce archwires. The retrieved archwires demonstrated lower forces during the initial stages of deactivation in three-point bending tests, compared with new specimens. The Af temperature of these archwires may lie higher than the regular intraoral temperature. Even at 2 mm deflections, the forces recorded from these archwires may lie beyond biologically safe limits.

Joint Reasoning of Real-time Visual Risk Zone Identification and Numeric Checking for Construction Safety Management

  • Ali, Ahmed Khairadeen;Khan, Numan;Lee, Do Yeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.313-322
    • /
    • 2020
  • The recognition of the risk hazards is a vital step to effectively prevent accidents on a construction site. The advanced development in computer vision systems and the availability of the large visual database related to construction site made it possible to take quick action in the event of human error and disaster situations that may occur during management supervision. Therefore, it is necessary to analyze the risk factors that need to be managed at the construction site and review appropriate and effective technical methods for each risk factor. This research focuses on analyzing Occupational Safety and Health Agency (OSHA) related to risk zone identification rules that can be adopted by the image recognition technology and classify their risk factors depending on the effective technical method. Therefore, this research developed a pattern-oriented classification of OSHA rules that can employ a large scale of safety hazard recognition. This research uses joint reasoning of risk zone Identification and numeric input by utilizing a stereo camera integrated with an image detection algorithm such as (YOLOv3) and Pyramid Stereo Matching Network (PSMNet). The research result identifies risk zones and raises alarm if a target object enters this zone. It also determines numerical information of a target, which recognizes the length, spacing, and angle of the target. Applying image detection joint logic algorithms might leverage the speed and accuracy of hazard detection due to merging more than one factor to prevent accidents in the job site.

  • PDF

Development of Intermittent Coating Process Using Roll-to-roll Slot-die Coater (롤투롤 슬롯 다이 코터를 이용한 간헐 코팅 공정 개발)

  • Mose Jung;Gieun Kim;Jeongpil Na;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.32-37
    • /
    • 2023
  • For the potential applications in large-area OLED lightings, hydrogen fuel cells, and secondary batteries, we have performed an intermittent coating of high-viscosity polydimethylsiloxane using roll-to-roll slot die coater. During intermittent coating, dead zones inevitably appear where the thickness of PDMS patch films becomes non-uniform, especially at the leading/trailing edge. To reduce it, we have coated the PDMS patches by varying the process parameters such as the installation angle of the slot die head, coating speed, and patch interval. It is observed that the PDMS solution flows down and thus the thickness profile is non-uniform for horizonal intermittent coating, whereas the PDMS solution remaining on the head lip causes an increase in the PDMS thickness at the leading/trailing edges for vertical intermittent coating when the coating velocity is low. As the coating speed increases, however, the dead zone is shown to be reduced. It is addressed that the overall dead zone (the dead zone at the leading edge + the dead zone at the trailing edge) is smaller with horizontal intermittent coating than with vertical intermittent coating.

  • PDF

The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption

  • Jeong-Su Park;Ik-Joo Chung;Hye-Ran Kim;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.29.1-29.23
    • /
    • 2023
  • Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.

Large eddy simulation of wind loads on a long-span spatial lattice roof

  • Li, Chao;Li, Q.S.;Huang, S.H.;Fu, J.Y.;Xiao, Y.Q.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.57-82
    • /
    • 2010
  • The 486m-long roof of Shenzhen Citizens Centre is one of the world's longest spatial lattice roof structures. A comprehensive numerical study of wind effects on the long-span structure is presented in this paper. The discretizing and synthesizing of random flow generation technique (DSRFG) recently proposed by two of the authors (Huang and Li 2008) was adopted to produce a spatially correlated turbulent inflow field for the simulation study. The distributions and characteristics of wind loads on the roof were numerically evaluated by Computational Fluid Dynamics (CFD) methods, in which Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes Equations (RANS) Model were employed. The main objective of this study is to explore a useful approach for estimations of wind effects on complex curved roof by CFD techniques. In parallel with the numerical investigation, simultaneous pressure measurements on the entire roof were made in a boundary layer wind tunnel to determine mean, fluctuating and peak pressure coefficient distributions, and spectra, spatial correlation coefficients and probability characteristics of pressure fluctuations. Numerical results were then compared with these experimentally determined data for validating the numerical methods. The comparative study demonstrated that the LES integrated with the DSRFG technique could provide satisfactory prediction of wind effects on the long-span roof with complex shape, especially on separation zones along leading eaves where the worst negative wind-induced pressures commonly occur. The recommended LES and inflow turbulence generation technique as well as associated numerical treatments are useful for structural engineers to assess wind effects on a long-span roof at its design stage.