• 제목/요약/키워드: school safety network

Search Result 289, Processing Time 0.027 seconds

A Study on Slow Driving of Metropolitan Train for Disorder Condition of Platform Safety Gate using LTE-R and Beacon (LTE-R과 비콘을 활용한 승강장안전문 장애발생 시 열차 서행운전에 관한 연구)

  • Joh, Eungyoung;Noh, Jowon;Kim, Jin-Tea;Lee, Sunghwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.31-36
    • /
    • 2020
  • The LTE-R system is a system consisting of a packet network that provides all IP-based services. Continuous failures related to the platform safety gate and subsequent safety accidents related to passengers and safety gate workers continue. The secondary damage caused by the failure of the platform safety door and the related human life damage have emerged as a major social issue.. By linking the beacon system to the Long Term Evoluton-Railway (LTE-R) network, an LTE-based railway wireless network currently in operation or being installed, it precisely locates trains and provides standardized fault alerts to train crews. When entering into the station, ultimately we will decelerate the train and reduce the accidents of metropolitabn railroad traffic by securing safe driving.

Vibration-based structural health monitoring using CAE-aided unsupervised deep learning

  • Minte, Zhang;Tong, Guo;Ruizhao, Zhu;Yueran, Zong;Zhihong, Pan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.557-569
    • /
    • 2022
  • Vibration-based structural health monitoring (SHM) is crucial for the dynamic maintenance of civil building structures to protect property security and the lives of the public. Analyzing these vibrations with modern artificial intelligence and deep learning (DL) methods is a new trend. This paper proposed an unsupervised deep learning method based on a convolutional autoencoder (CAE), which can overcome the limitations of conventional supervised deep learning. With the convolutional core applied to the DL network, the method can extract features self-adaptively and efficiently. The effectiveness of the method in detecting damage is then tested using a benchmark model. Thereafter, this method is used to detect damage and instant disaster events in a rubber bearing-isolated gymnasium structure. The results indicate that the method enables the CAE network to learn the intact vibrations, so as to distinguish between different damage states of the benchmark model, and the outcome meets the high-dimensional data distribution characteristics visualized by the t-SNE method. Besides, the CAE-based network trained with daily vibrations of the isolating layer in the gymnasium can precisely recover newly collected vibration and detect the occurrence of the ground motion. The proposed method is effective at identifying nonlinear variations in the dynamic responses and has the potential to be used for structural condition assessment and safety warning.

Implementation of FlexRay Network System using Node-based Scheduling Method (노드 기반 스케줄링 방법을 이용한 FlexRay 네트워크 시스템의 구현)

  • Kim, Man-Ho;Ha, Kyoung-Nam;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.39-47
    • /
    • 2010
  • As vehicles become intelligent for convenience and safety of drivers, in-vehicle networking (IVN) systems are essential components of intelligent vehicles. Recently, the chassis networking system which require increased network capacity and real-time capability is being developed to expand the application area of IVN systems. Also, FlexRay has been developed for the chassis networking system. However, FlexRay needs a complex scheduling method of static segment, which is a barrier for implementing the chassis networking system. Especially, if we want to migrate from CAN network to FlexRay network using CAN message database that was well constructed for the chassis networking system by automotive vendors, a novel scheduling method is necessary to be able to reduce design complexity. This paper presents a node-based scheduling method for FlexRay network system. And, in order to demonstrate the method's feasibility, its performance is evaluated through an experimental testbed.

Social Perception of Disaster Safety Education for Migrant Youth based on Big Data (빅데이터를 통해 바라본 이주배경청소년 재난안전교육에 대한 사회적 인식)

  • Ying Jin;Sang Jeong
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.462-469
    • /
    • 2024
  • Purpose: This study aims to analyze data on disaster safety education for migrant youth and to examine the corresponding social perceptions. Method: Data on disaster safety education for migrant youth were collected and analyzed using Textom and Ucinet. The data used in the study were searched on portal websites from 2016 to 2023 using the keywords 'migrant youth+ disaster + safety education'. Result: The analysis results showed that 'education (306)' had the highest frequency, followed by 'safety (287)', 'school (97)', 'society (85)', and 'support (77)'. The keyword with the high degree of centrality, closeness centrality, and betweenness centrality were 'education', 'safety' and 'society'. 'Family' ranked higher in betweenness centrality than the rankings of frequency analysis, degree centrality and closeness centrality, indicating that 'family' plays a significant role as a mediator in the network of disaster safety education for migrant youth. Conclusion: By examining social awareness about disaster safety education for migrant youth, the findings will be used to develop policies and strategies for disaster safety education that consider the unique vulnerabilities of migrant youth in disaster situations.

Predicting the core thermal hydraulic parameters with a gated recurrent unit model based on the soft attention mechanism

  • Anni Zhang;Siqi Chun;Zhoukai Cheng;Pengcheng Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2343-2351
    • /
    • 2024
  • Accurately predicting the thermal hydraulic parameters of a transient reactor core under different working conditions is the first step toward reactor safety. Mass flow rate and temperature are important parameters of core thermal hydraulics, which have often been modeled as time series prediction problems. This study aims to achieve accurate and continuous prediction of core thermal hydraulic parameters under instantaneous conditions, as well as test the feasibility of a newly constructed gated recurrent unit (GRU) model based on the soft attention mechanism for core parameter predictions. Herein, the China Experimental Fast Reactor (CEFR) is used as the research object, and CEFR 1/2 core was taken as subject to carry out continuous predictive analysis of thermal parameters under transient conditions., while the subchannel analysis code named SUBCHANFLOW is used to generate the time series of core thermal-hydraulic parameters. The GRU model is used to predict the mass flow and temperature time series of the core. The results show that compared to the adaptive radial basis function neural network, the GRU network model produces better prediction results. The average relative error for temperature is less than 0.5 % when the step size is 3, and the prediction effect is better within 15 s. The average relative error of mass flow rate is less than 5 % when the step size is 10, and the prediction effect is better in the subsequent 12 s. The GRU model not only shows a higher prediction accuracy, but also captures the trends of the dynamic time series, which is useful for maintaining reactor safety and preventing nuclear power plant accidents. Furthermore, it can provide long-term continuous predictions under transient reactor conditions, which is useful for engineering applications and improving reactor safety.

Performance Evaluation of a Smart CoAP Gateway for Remote Home Safety Services

  • Kim, Hyun-Sik;Seo, Jong-Su;Seo, Jeongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3079-3089
    • /
    • 2015
  • In this paper, a smart constrained application protocol (CoAP)-based gateway with a border router is proposed for home safety services to remotely monitor the trespass, fire, and indoor air quality. The smart CoAP gateway controls a home safety sensor node with a pyroelectric infrared motion sensor, a fire sensor, a humidity and temperature sensor, and a non-dispersive infrared CO2 sensor and gathers sensing data from them. In addition, it can convert physical sensing data into understandable information and perform packet conversion as a border router for seamless connection between a low-power wireless personal area network (6LoWPAN) and the Internet (IPv6). Implementation and laboratory test results verify the feasibility of the smart CoAP gateway which especially can provide about 97.20% data throughput.

Study on the establishment of an efficient disaster emergency communication system focused on the site (현장중심의 효율적 재난통신체계 수립 방안 연구)

  • Kim, Yongsoo;Kim, Dongyeon
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.518-527
    • /
    • 2014
  • Our society is changed and diversified rapidly and such tendency is accelerated day after day and has made a lot of problems in the many fields. The important thing we have to recognize is such tendency has a bad effect recently on the safety system in Korea. So it is time to enhance the national safety system and moreover recently Sewol-ho(passenger ship) went down in the sea, it made people remind the importance of national safety system. With this incident, Korean government decided to establish the national safety communication network against the disaster. At this time, I will propose several ideas about the national safety communication network. 1. It must to be established an unified network to contact people who is on a disaster site anytime and anywhere. This is most important element on all disaster sites. 2. PS-LTE technology must to be adopted to the network because it has many advantages including various multimedia services compared to the TETRA in the past. 3. 700MHz is the most efficient band for the network because it has wide cell sites coverage compared to 1.8GHz. 4. Satellite communication system is needed to the network for back-up. 5. It will be effective to adopt Social Media to the communication network system like a Twitter or Facebook for sharing many kinds of information and notifying people of warning message. 6. It can make the network more useful to introduce the latest technology like a sensor network. And Korean government has to improve the system related to the disaster including law and operating organization.

Implementation of IEEE 1451 based ZigBee Smart Sensor System for Active Telemetries (능동형 텔레매트릭스를 위한 IEEE 1451 기반 ZigBee 스마트 센서 시스템의 구현)

  • Lee, Suk;Song, Young-Hun;Park, Jee-Hun;Kim, Man-Ho;Lee, Kyung-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.176-184
    • /
    • 2011
  • As modern megalopolises become more complex and huge, convenience and safety of citizens are main components for a welfare state. In order to make safe society, telemetrics technology, which remotely measures the information of target system using electronic devices, is an essential component. In general, telemetrics technology consists of USN (ubiquitous sensor network) based on a wireless network, smart sensor, and SoC (system on chip). In the smart sensor technology, the following two problems should be overcome. Firstly, because it is very difficult for transducer manufacturers to develop smart sensors that support all the existing network protocols, the smart sensor must be independent of the type of networking protocols. Secondly, smart sensors should be modular so that a faulty sensor element can be replaced without replacing healthy communication element. To solve these problems, this paper investigates the feasibility of an IEEE 1451 based ZigBee smart sensor system. More specifically, a smart sensor for large network coverage has been developed using ZigBee for active telemetrics.

Ad hoc Network for Dynamic Multicast Routing Protocol Using ADDMRP

  • Chi, Sam-Hyun;Kim, Sung-Uk;Lee, Kang-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.209-214
    • /
    • 2007
  • In this paper, we proposed a new MANET (Mobile Ad hoc Networks) technology of routing protocol. The MANET has a mobility formation of mobile nodes in the wireless networks. Wireless network have two types architecture: the Tree based multicast and shared tree based. The two kind's architecture of general wireless networks have difficult to solve the problems existing in the network, such as connectivity, safety, and reliability. For this purpose, as using that ADDMRP (Ad hoc network Doppler effect-based for Dynamic Multicast Routing Protocol), this study gives the following suggestion for new topology through network durability and Omni-directional information. The proposed architectures have considered the mobility location, mobility time, density, velocity and simultaneous using node by Doppler effects and improved the performance.

CNN Based Human Activity Recognition System Using MIMO FMCW Radar (다중 입출력 FMCW 레이다를 활용한 합성곱 신경망 기반 사람 동작 인식 시스템)

  • Joon-sung Kim;Jae-yong Sim;Su-lim Jang;Seung-chan Lim;Yunho Jung
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.428-435
    • /
    • 2024
  • In this paper, a human activity regeneration (HAR) system based on multiple input multiple output frequency modulation continuous wave (MIMO FMCW) radar was designed and implemented. Using point cloud data from MIMO radar sensors has advantages in terms of privacy, safety, and accuracy. For the implementation of the HAR system, a customized neural network based on PointPillars and depthwise separate convolutional neural network (DS-CNN) was developed. By processing high-resolution point cloud data through a lightweight network, high accuracy and efficiency were achieved. As a result, the accuracy of 98.27% and the computational complexity of 11.27M multiply-accumulates (Macs) were achieved. In addition, the developed neural network model was implemented on Raspberry-Pi embedded system and it was confirmed that point cloud data can be processed at a speed of up to 8 fps.