• Title/Summary/Keyword: school bonding

Search Result 893, Processing Time 0.024 seconds

Effect of Different Types of Bonding Agent and Application Methods on Shear Bond Strength of Orthodontic Bracket (Bonding agent의 종류 및 적용 방법에 따른 교정용 브라켓의 전단결합강도에 관한 연구)

  • Lee, Jaehee;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.4
    • /
    • pp.419-426
    • /
    • 2017
  • Attachment of the orthodontic bracket conducted during the window opening procedure can result in failure due to various adverse conditions such as blood or saliva contamination, or other wet conditions. For the success of the bracket attachment, reduction of total operation time is crucial. The purpose of this literature is to evaluate the differences between the final resultant shear bond strength of the conventional method of using phosphoric acid and self-etching primer, and that of the operation time-reduced method in which the curing step is omitted subsequent to the primer application. A total of 40 human maxillary incisors were prepared. Group I(control group) and II were etched with 37% phosphoric acid and Group III and IV were conditioned with self-etching primer. Attachment of the group I and III was conducted by manufacturer's instructions. The operation time of Group II and IV was reduced by eliminating the curing step after the primer application. The resultant shear bond strength of each group was measured and an adhesive remnant index (ARI) was recorded. The mean shear bond strength of group I, II, III, and IV were 14.16 MPa, 8.33 MPa, 8.29 MPa, and 6.48 MPa respectively. Significant differences could only be found between the control group and the experimental groups (p < 0.05). The ARI indicated no significant difference among all groups.

THE EFFECT OF ETHYLENE GLYCOL ANALOGS ON MECHANICAL PROPERTIES OF MOIST DEMINERALIZED DENTIN MATRIX (Ethylene Glycol 유사체가 탈회된 상아질의 물리적 성질에 미치는 영향)

  • Lee Kyung-Hee;Cho Young-Gon;Lee Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.4
    • /
    • pp.290-299
    • /
    • 2006
  • Objectives: The purpose of this study is to evaluate the effect of ethylene glycol analogs on modulus of elasticity and ultimate tensile strength of moist, demineralized dentin matrix. Methods: Dentin disks 0.5 mrn thick were prepared from mid-coronal dentin of extracted. unerupted, human third molars. 'I' beam and hour-glass shaped specimens were prepared from the disks, the ends protected with nail varnish and the central regions completely demineralized in 0.5M EDTA for 5 days. Ultimate tensile stress (UTS) and low strain modulus of elasticity (E) were determined with specimens immersed for 60 min in distilled water $(H_{2}O)$, ethylene glycol $(HO-CH_{2}-CH_{2}-OH)$, 2-methoxyethanol $(H_{3}CO-CH_{2}-CH_{2}-OH)$, and 1,2-dimethoxyethane $(H_{3}CO-CH_{2}-CH_{3}-OCH_{3})$ prior to testing in those same media. Modulus of elasticity was measured on the same specimens in a repeated measures experimental design. The results were analyzed with a one-way ANOVA on ranks, followed by Dunn's test at ${\alpha}\;=\;0.05$. Regression analysis examined the relationship between UTS or E and hoy's solubility parameter for hydrogen bonding $({\delta}_{h})$ of each solvent. Results: The UTS of demineralized dentin in water, ethylene glycol, 2-methoxyethanol, and 1,2-dimethoxyethane was 24 (3), 30 (5), 37 (6), and 45 (6) MPa, ${\times}$ (SD) N = 10. Low strain E for the same media were 16 (13), 23 (14), 52 (24), and 62 (22) MPa. Regression analysis of UTS vs ${\delta}_{h}$ revealed a significant $(p\;<\;0.0001,\;r\;=\;-0.99,\;R^{2}\;=\;0.98)$ inverse, exponential relationship. A similar inverse relationship was obtained between low strain E vs ${\delta}_{h}\;(p\;<\;0.0005,\;r\;=\;-0.93,\;R^{2}\;=\;0.86)$. Significance: The tensile properties of demineralized dentin are dependent upon the hydrogen bonding ability of polar solvents $({\delta}_{h})$. Solvents with low ${\delta}_{h}$ values may permit new interpeptide H-bonding in collagen that increases its tensile properties. Solvents with high ${\delta}_{h}$ values prevent the development of these new interpeptide H-bonds.

Crystal structural property and chemical bonding nature of cellulose nanocrystal formed by high-pressure homogenizer (고압 균질기를 이용하여 형성된 셀룰로오스 나노결정의 결정 구조 및 화학적 결합 특성 연구)

  • Chel-Jong Choi;Nae-Man Park;Kyu-Hwan Shim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.79-85
    • /
    • 2024
  • We investigated the crystal structural property and chemical bonding nature of cellulose nanocrystal extracted directly from cotton cellulose using high-pressure homogenizer. The nanowire-like cellulose nanocrystals were randomly distributed in the form of a dense mesh. Based on calculating the interplanar distance of the Bragg-diffracted crystal plane observed through X-ray diffraction (XRD) analysis, it was found that the cellulose nanocrystals formed by high-pressure homogenizer had a monoclinc crystal structure, corresponding to the cellulose Iβ sub-polymorph. Solid-state nuclear magnetic resonance (NMR) analysis for the quantitatively evaluation of the amorphous region in cellulose nanocrystals revealed that the crystallinity index of cellulose nanocrystals was calculated to be 53.06 %. The O/C ratio of the surface of cellulose nanocrystal was estimated to be 0.82. Further analysis showed that chemical bonds of C-C bond or C-H bond, C-O bond, O-C-O bond or C=O bond, and O-C=O bond were the main chemical bonding states of the cellulose nanocrystal surface.

Supramolecular Liquid Crystals Containing Hydrogen Bond between Carboxylic Acid and Pyridyl Moieties and their Thermotropic Mesomorphism

  • Lee, Seung-Jun;You, Mi-Kyoung;Lee, Ji-Won;Lee, Shin-Woo;Jho, Jae-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.297-297
    • /
    • 2006
  • Recently columnar liquid crystals have been studied due to their possible application to organic conducting materials. Supramolecular columnar liquid crystals consist of mesogenic unit which can aggregate into discs that will make up the columns which associate to form a two-dimensional network. In this study, we prepared supramolecular columnar liquid crystals containing hydrogen bonding between carboxylic acid and, pyridine moieties. Thermal and structural properties of prepared complexe were investigated, and it exhibited hexagonal columnar structure ($Col_{h}$) at room temperature.

  • PDF

Experimental Investigation on Admittance-Based Piezoelectric Sensor Diagnostic Process (Admittance 기반 압전체 센서 자가진단절차의 영향인자 파악 및 실험적 고찰)

  • Jo, HyeJin;Park, Tong-Il;Park, Gyuhae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Structural health monitoring (SHM) techniques based on the use of active-sensing piezoelectric (PZT) materials have received considerable attention. The validation of the PZT functionality during SHM operation is critical to successfully implementing a reliable SHM system. In this study, we investigated several parameters that affect the admittance-based sensor diagnostic process. We experimentally identified the temperature dependency of the active-sensor diagnostic process. We found that the admittance-based sensor diagnostic process can differentiate the adhesion conditions of bonding materials that are used to install a PZT on a structure, which is important when designing a sensor diagnostic process for an SHM system.

The influence of moisture control on bond strength of composite resin treated with self-etching adhesive system (Self-etching adhesive system에서 수분 조절이 레진의 치질접착강도에 미치는 영향)

  • Jin, Myoung-Uk;Kim, Young-Kyung;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.4
    • /
    • pp.363-369
    • /
    • 2002
  • 최근에 많이 사용되어지고 있는 치과용 접착제는 산 부식 후 수분이 있는 상태에서 적용하는 wet-bonding 술식을 많이 추천하고 있다. 하지만 self-etching primer의 경우 산부식과 priming 과정이 동시에 시행되고, 제조자들은 건조된 치아표면에 적용할 것을 추천하고 있다. 그러나 건조된 정도에 대하여서는 별다른 추천사항이 없으며. 수분이 self-etching primer에 어떤 영향을 미치는지에 대하여서는 별다른 연구가 이루어져 있지 않은 상태이다. 이에 본 연구에서는 치질 삭제 후 남아있는 수분이 self-etching primer의 레진 접착 강도에 어떤 영향을 미치는 지를 알아보고자 하였다. 발거한 대구치 96개를 이용하여 물기가 있는 상태에서 #600 사포로 표면을 연마하고, 법랑질 면을 노출시킨 군과 상아질을 노출시킨 군으로 분류 후, 30분 공기 중 방치 군 (1군), 5초 공기 건조 군 (2군), 1초 공기 건조 군 (3군), 솜으로 약간의 물기를 제거한 군(blot dry) (4군) 등 총 8개의 군으로 나누었다. Self-etching adhesive system인 Clearfil SE Bond primer를 20초간 적용하고, bonding제 도포 후 10초간 광중합 시행하였다. 접착제 처리한 치아면에 몰드를 고정한 후 Clearfil AP-X 복합레진을 2mm 충전하고, 40초간 광중합을 시행하였다. 24시간 후 전단 응력 결합강도를 측정하였으며, 그 결과는 다음과 같이 나타났다. 법랑질과 상아질 모두에서, 30분 건조군과 5초 공기건조군이 1초와 blot drying 군보다 높은 결합강도를 보였으며 통계학적으로 유의한 차이를 보였다(p<0.05). 본 실험 결과에 의하면 self-etching adhesive system을 사용함에 있어서 법랑질과 상아질군 공히 건조된 상태에서 사용하여야 하며 수분의 존재시 치아와의 결합력이 감소하는 것으로 나타났다. 따라서 임상에서 접착제의 적용시 수분의 조절에 주의하여야 할 것으로 사료된다.

GINGIVAL MARGIAL LEAKAGE AND BONDING PATTERN OF THE COMPOSITE RESIN INLAY ACCORDING TO VARIOUS THICKNESS OF DIE SPACER (Die spacer의 두께에 따른 복합레진 inlay의 치은 변연부 미세누출 및 접착양태에 관한 연구)

  • Park, Tae-Il;Shin, Dong-Hoon;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.152-163
    • /
    • 1995
  • This experiment was performed to observe the adhesion pattern and microleakage in the gingival margin according to variation in the resin cement thickness which results from thickness of Die spacer. which is considered to effect the adaptability of the composite resin inlays. Clearfil CR inlays were fabricated on stone models with CR Sep applicated once and Nice fit twice, 4 times, and 6 times each. After 2nd curing within the CRC-100 oven, CR inlays were cemented with CR inlay cement. Dye(2% methylene blue) penetration and adhesion pattern were evaluated after sectioning of gingival margin into :3 pieces. The results were as follows ; 1. The thickness of resin cement showed unevenchanging pattern with that of die spacer, namely, it was increased until 4 times' application of Nice-Fit but was decreased with 6 times' application of that. 2. The degree of dye penetration wasn't affected by cement thickness within a limited value. 3. Most of dye penetration was shown through the interface between cement and enamel rather than the interface between cement and CR inlay. This shows that the affinity of resin cement for CR inlay was superior to the adhesive strength with tooth structure. 4. No gap was found at the interface between enamel and cement but some showed separation between dentin and cement. It is concidered that the contraction force of cement was less than the bond strength with the enamel. 5. Lots of voids were found in the CR inlay and resin cement. There was a pooling tendency of bonding agent and cement in the axiogingival line angle portion. 6. In some specimens, cracks were shown in enamel margin. From this it could be considered that cavity preparation and surface treatment weakened the tooth structure.

  • PDF

Effect of dimethyl sulfoxide on bond durability of fiber posts cemented with etch-and-rinse adhesives

  • Shafiei, Fereshteh;Memarpour, Mahtab;Sarafraz, Zahra
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.251-258
    • /
    • 2016
  • PURPOSE. This study was undertaken to investigate whether use of an adhesive penetration enhancer, dimethyl sulfoxide (DMSO), improves bond stability of fiber posts to root dentin using two two-step etch-and-rinse resin cements. MATERIALS AND METHODS. Forty human maxillary central incisor roots were randomly divided into 4 groups after endodontic treatment and post space preparation, based on the fiber post/cement used with and without DMSO pretreatment. Acid-etched root dentin was treated with 5% DMSO aqueous solution for 60 seconds or with distilled water (control) prior to the application of Excite DSC/Variolink II or One-Step Plus/Duolink for post cementation. After micro-slicing the bonded root dentin, push-out bond strength (P-OBS) test was performed immediately or after 1-year of water storage in each group. Data were analyzed using three-way ANOVA and Student's t-test (${\alpha}$=.05). RESULTS. A significant effect of time, DMSO treatment, and treatment${\times}$time interaction were observed (P<.001). DMSO did not affect immediate bonding of the two cements. Aging significantly reduced P-OBS in control groups (P<.001), while in DMSO-treated groups, no difference in P-OBS was observed after aging (P>.05). CONCLUSION. DMSO-wet bonding might be a beneficial method in preserving the stability of resin-dentin bond strength over time when fiber post is cemented with the tested etch-and-rinse adhesive cements.

Miscible Blend and Semi-IPN Gel of Poly(hydroxyethyl aspartamide) with Poly(N-vinyl pyrrolidone) (폴리아스팔트아미드와 폴리(비닐 피롤리돈)의 상용블렌드 및 Semi-IPN 젤 제조)

  • Meng, Fan;Jeon, Young-Sil;Chung, Dong-June;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.617-621
    • /
    • 2012
  • PHEAs [${\alpha}$,${\beta}$-poly(2-hydroxyethyl-DL-aspartamides)], a class of poly(amino acid), have been widely studied as biodegradable and biocompatible polymers for potential biomedical and pharmaceutical applications. In this study, we investigated a homogeneous blend of PHEA with poly(N-vinyl pyrrolidone) (PNVP) and its semi-IPN (semi-interpenetrating polymer network) gels. Blend films were prepared by a solution casting method. The resulting blends were totally transparent over the whole composition ranges and the single $T_g$, changing monotonously with composition, was observed by DSC to confirm the miscibility between these two polymers. FTIR was used to discuss the possible hydrogen-bonding interaction between polymers. In addition, semi-IPN type gels were prepared by chemical crosslinking of PHEA/PNVP blend solution using hexamethylene diisocyanate (HMDI) as a crosslinking reagent. The prepared gel was characterized by their swelling property and morphology.

Effect of antioxidants on push-out bond strength of hydrogen peroxide treated glass fiber posts bonded with two types of resin cement

  • Khoroushi, Maryam;Mazaheri, Hamid;Tarighi, Pardis;Samimi, Pouran;Khalighinejad, Navid
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.303-309
    • /
    • 2014
  • Objectives: Hydrogen peroxide ($H_2O_2$) surface treatment of fiber posts has been reported to increase bond strength of fiber posts to resin cements. However, residual oxygen radicals might jeopardize the bonding procedure. This study examined the effect of three antioxidant agents on the bond strength of fiber posts to conventional and self-adhesive resin cements. Materials and Methods: Post spaces were prepared in forty human maxillary second premolars. Posts were divided into five groups of 8 each: G1 (control), no pre-treatment; G2, 10% $H_2O_2$ pre-treatment; G3, G4 and G5. After $H_2O_2$ application, Hesperidin (HES), Sodium Ascorbate (SA) or Rosmarinic acid (RA) was applied on each group respectively. In each group four posts were cemented with Duo-Link conventional resin cement and the others with self-adhesive BisCem cement. Push-out test was performed and data were analyzed using 2-way ANOVA and tukey's post-hoc test (${\alpha}=0.05$). Results: There was a statistically significant interaction between the cement type and post surface treatment on push-out bond strength of fiber posts (p < 0.001, F = 16). Also it was shown that different posts' surface treatments significantly affect the push-out bond strength of fiber posts (p = 0.001). $H_2O_2$ treated posts (G2) and control posts (G1) cemented with Duo-link showed the highest ($15.96{\pm}5.07MPa$) and lowest bond strengths ($6.79{\pm}3.94$) respectively. Conclusions: It was concluded that $H_2O_2$ surface treatment might enhance the bond strength of fiber posts cemented with conventional resin cements. The effect of antioxidants as post's surface treatment agents depends on the characteristics of resin cements used for bonding procedure.