DOI QR코드

DOI QR Code

Experimental Investigation on Admittance-Based Piezoelectric Sensor Diagnostic Process

Admittance 기반 압전체 센서 자가진단절차의 영향인자 파악 및 실험적 고찰

  • Jo, HyeJin (School of Mechanical Engineering, Chonnam Nat'l Univ.) ;
  • Park, Tong-Il (School of Mechanical Engineering, Chonnam Nat'l Univ.) ;
  • Park, Gyuhae (School of Mechanical Engineering, Chonnam Nat'l Univ.)
  • Received : 2014.07.29
  • Accepted : 2014.08.29
  • Published : 2015.01.01

Abstract

Structural health monitoring (SHM) techniques based on the use of active-sensing piezoelectric (PZT) materials have received considerable attention. The validation of the PZT functionality during SHM operation is critical to successfully implementing a reliable SHM system. In this study, we investigated several parameters that affect the admittance-based sensor diagnostic process. We experimentally identified the temperature dependency of the active-sensor diagnostic process. We found that the admittance-based sensor diagnostic process can differentiate the adhesion conditions of bonding materials that are used to install a PZT on a structure, which is important when designing a sensor diagnostic process for an SHM system.

압전소자(Piezoelectric transducer, PZT)는 구조물의 안정성 평가를 목적으로 하는 구조 건전성 모니터링 기법(Structural Health Monitoring, SHM)의 센서(sensor) 및 구동기(actuator)로 많이 활용되고 있다. 사용되는 센서 및 구동기의 성능을 사전에 파악하고, 잔존수명 및 결함을 탐지하는 센서 자가 진단법은 안정적인 SHM의 결과를 얻기 위해 매우 중요한 절차이다. 본 연구에서는 Admittance 값을 기반으로 한 센서 자가 진단절차를 통하여 압전체 센서의 결함을 탐지하였으며, 센서 진단과정에 영향을 줄 수 있는 접합층 및 온도 등의 영향인자에 대해 실험적 분석을 실시하였다. 분석 결과 Admittance와 온도 및 접착제의 상관관계를 파악할 수 있었으며, admittance를 기반으로 한 센서 자가 진단 절차를 통해 센서의 접착상태와 접착제의 성능평가가 가능함을 검증하였다.

Keywords

References

  1. Farrar, C. R. and Worden, K., 2006, "An Introduction to Structural Health Monitoring," Mathematical Physical & Engineering Sciences, pp. 303-315.
  2. Park, G., Farrar, C. R., Lanza di Scalea, F. and Coccia, S., 2006, "Performance Assessment and Validation of Piezoelectric Active Sensors in Structural Health Monitoring," Smart Materials and Structures, 15(6), pp. 1673-1683. https://doi.org/10.1088/0964-1726/15/6/020
  3. Kerschen, G., De Boe, P., Golincal, J. and Worden, K., 2005, "Sensor Validation Using Proncipal Component Analysis," Smart Materials and Stirctures, 14, pp. 36-42. https://doi.org/10.1088/0964-1726/14/1/004
  4. Giurgiutiu, V., Zagrai, A. N. and Bao, J. J., 2002, "Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring," Journal of Structural Health Monitoring, 1, pp. 41-61. https://doi.org/10.1177/147592170200100104
  5. Xu, Y. G. and Liu, G. R., 2002, "A Modified Electro-Mechanical Impedance Model of Piezoelectric Actuator-Sensors for Debonding Detection of Composite Patches," Journal of Intelligent Materail Systems and Structures, Vol. 13, pp. 389-396. https://doi.org/10.1177/104538902761696733
  6. Park, G., Farrar, C. R., Rutherford, A. C. and Robertson, A. N., 2006, "Piezoelectric Active Sensor Self-Diagnostics Using Electrical Admittance Measurements," ASME Journal of Vibration and Acoustics, Vol.128, pp. 469-476. https://doi.org/10.1115/1.2202157
  7. Fabricio, G. B., Dannilo, E. B., Vinicius, A. D. and Jose, A. C. U., 2014 "An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-Based Structural Health Monitoring," Sensors 2014, 14(1), pp. 1208-1227.
  8. Bhalla, S. and Moharana, S., 2013, "Modeling of Piezo-Bond Structure System for Structural Health Monitoring Using EMI Technique," Key Engineering Materials, Vol. 569-570.
  9. Grisso, B. L. and Inman, D. J., 2010, "Temperature Corrected Sensor Diagnostics for Impedance-Based SHM," Journal of Sound and Vibration, Vol 329, pp. 2323-2336. https://doi.org/10.1016/j.jsv.2009.04.007
  10. Park, S., Ahmad, S., Yun, C. B. and Rod, Y., 2006, "Multiple Crack Detection of Concrete Structures Using Impedance-based Structural Health Monitoring Techniques," Society for Experimental Mechanics, 46, pp. 609-618 https://doi.org/10.1007/s11340-006-8734-0
  11. Park, G., Shon, H., Farrar, C. R. and Inman, D. J., 2003, "Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward," Shock Vibr Dig, 35(6), pp. 451-463. https://doi.org/10.1177/05831024030356001
  12. Sun, F. P., Chaudhry, Z., Liang, C. and Rogers, C. A., 1995, "Truss Structure Integrity Identification Using PZT Sensor-Actuator," J. Intell. Mater. Syst. Struct., Vol. 6, pp. 134-139. https://doi.org/10.1177/1045389X9500600117
  13. Saint-Pierre, N., Jayet, Y., Perrissin-Fabert, I., and Baboux, J. C., 1996, "The Influence of Bonding Defects on the Electric Impedance of a Piezoelectric Embedded Element," J. Phys. D: Appl. Phys., Vol. 29, pp. 2976-2982. https://doi.org/10.1088/0022-3727/29/12/006
  14. Bhalla, S. and Soh, S. K., 2004, "Electromechanical Impedance Modeling for Adhesively Bonded Piezo-Transducers," J.Intell. Mater. Syst. Struct, 15, pp. 955-972. https://doi.org/10.1177/1045389X04046309
  15. Bhalla, S. and Moharana, S., 2013, "A Refined Shear Lag Model for Adhesively Bonded Piezo-Impedance Transducers," Journal of Intelligent Material Systems and Structures, Vol. 24, pp. 33-48. https://doi.org/10.1177/1045389X12457837
  16. Sirohi, J. and Chopra, I., 2000, "Fundamental Behavior of Piezoceramic Sheet Actuators," J. Intell. Mater. Syst. Struct., Vol. 11, pp. 47-61. https://doi.org/10.1106/WV49-QP37-4Q1M-P425
  17. Overly, R. G., Park, G. and Farinholt, K. M., 2009, "Piezoelectric Active-Sensor Diagnosics and Validation Using Instantaneous Baseline Data", IEEE Sensors Journal, Vol. 9, pp. 1414-1421. https://doi.org/10.1109/JSEN.2009.2018351
  18. Baptista, F. G., Budoya, D. E., de Almeida, V. A. D. and Ulson, J. A. C., 2014, "An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-Based Structural Health Monitoring," Sensors 2014, 14, pp. 1208-1227.
  19. Peairs, D. M., Park, G. and Inman, D. J., 2004, "Improving Accessibility of the Impedance-Based Structural Health Monitoring Method," Journal of Intelligent Material Systems and Structures, Vol. 15.

Cited by

  1. Diagnosis and validation of damaged piezoelectric sensor in electromechanical impedance technique vol.28, pp.7, 2017, https://doi.org/10.1177/1045389X16657427