• Title/Summary/Keyword: schema co-evolution algorithm(SCEA)

Search Result 2, Processing Time 0.02 seconds

Co-Evolutionary Algorithm for the Intelligent System

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1013-1016
    • /
    • 1999
  • Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based optimization method based on the principle of the Darwinian natural selection. The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. Although GA does well in many applications as an optimization method, still it does not guarantee the convergence to a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve. In this paper we propose an extended schema theorem associated with a schema co-evolutionary algorithm(SCEA), which explains why the co-evolutionary algorithm works better than SGA. The experimental results show that the SCEA works well in optimization problems including deceptive functions.

  • PDF

A Performance Comparison between GA and Schema Co-Evolutionary Algorithm (스키마 공진화 알고리즘과 GA의 성능 비교)

  • 전호병;전효병;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.134-137
    • /
    • 2000
  • Genetic algorithms(GAs) have been widely used as a method to solve optimization problems. This is because GAs have simple and elegant tools with reproduction, crossover, and mutation to rapidly discover good solutions for difficult high-dimensional problems. They, however, do not guarantee the convergence of global optima in GA-hard problems such as deceptive problems. Therefore we proposed a Schema Co-Evolutionary Algorithm(SCEA) and derived extended schema 76988theorem from it. Using co-evolution between the first population made up of the candidates of solution and the second population consisting of a set of schemata, the SCEA works better and converges on global optima more rapidly than GAs. In this paper, we show advantages and efficiency of the SCEA by applying it to some problems.

  • PDF