• 제목/요약/키워드: scheelite

검색결과 60건 처리시간 0.03초

옥방(玉房) 중석광상(重石鑛床)의 성인(成因)에 관(關)한 연구(硏究) -특(特)히 남부광체(南部鑛體)에 대(對)하여- (On the Genesis of Okbang Tungsten Deposits)

  • 윤정수
    • 자원환경지질
    • /
    • 제12권4호
    • /
    • pp.181-195
    • /
    • 1979
  • The Nambu orebodies of the Okbang tungsten mine are hosted in the Precambrian amphibolite and Weonnam formation. These orebodies can be classified into two types; The scheelite-bearing ore vein occurring in the amphibolite (the Nambu 1, 2 adits) and tungsten-bearing quartz vein along the contact between the amphibolite and the Weonnam formation (the Young-ho, -1, -2, -3 levels). The scheelite-bearing ore vein in the amphilbolite is discontinuous, narrow, and highly irregular in geometry, occurring only within the amphibolite with which of the vein is graduational. Based on these feature of the mode of occurrence, the origin of this ore type might be attributed to a potential segregation of tungsten ore fluid in situ from hornblenditic basic magma of the host rock. Tungsten-bearing quartz vein, however, is considered to have deposited along the N30-60E trending fractures as a later hypothermal vein after the hornblendite was emplaced. The principal ore mineral is scheelite with minor amount of wolframite, and the gangue minerals are quartz, and small amounts of fluorite, pyrrhotite, chalcopyrite and calcite. Fluid inclusion study of minerals from the Nambu orebody reveals that the fluids in fluorite of the scheelite-bearning ore vein attained a temperature range of $208{\sim}256^{\circ}C$ and those in quartz from the tungsten-bearing quartz vein a temperature range of $220{\sim}357^{\circ}C$. The real formation temperatures can be somewhat higher than filling temperatures, if pressure correction is made. Chemical analysis of 8 amphibolitc samples on major and some trace elements indicate that the amphibolite is igneous origin. On a Niggli diagram (al-alk)versus c, the analytical values are plotted on an igneous field, and on a Niggli diagram mg versus c they follow a karroo igneous trend line. According to the Ba, Cr, and Ni versus Niggli mg plots suggested by Leake (1964), Okbang amphibolite fall outside a pelitic field and compare favorably with his plots form ortho-amphibolites. Analitical values of $MoO_3$ of 8 samples of scheelite minerals from the Nambu orebody indicate that the tungsten-bearing quartz vein (type n) of Nambu orebody shows a range from 1. 69% to 4.38% which is higher than 0.94%~3.25% $MoO_3$ for the scheelite-bearing ore vein (type I). This fact indicates that the type II was deposited in a lower $fO_2/higher$ $fO_2$ environment and under lower temperature than the type I. Analysis of major components $WO_3$, MnO, and FeO of 6 samples of wolframite from the type II veins revealed that they contain 73.35~76.2% $WO_3$, 7.94~11.63% MnO, and 10.53~14.82% FeO. MnO/FeO ratios of wolframite shows the range of 0.85~1.17 which suggests a slightly higher temperature type of deposits than other major tungsten deposits in the country.

  • PDF

Knelson Concentrator를 이용한 저품위 회중석의 전처리 기술개발 (Study on the pre-beneficiation of low grade scheelite ore using Knelson Concentrator)

  • 전호석;양정일;이은선;최희경;백상호
    • 광물과산업
    • /
    • 제26권
    • /
    • pp.13-21
    • /
    • 2013
  • 본 연구는 저품위 회중석을 최종 선별처리 하기에 앞서 비교적 조립자에서 많은 양의 맥석을 제거하여 경제적이며 효율적인 선별기술을 개발하는데 있다. 일반적으로 저품위 회중석의 경우 1차 조선정광을 얻기 위해 지그나 스파이랄 등의 비중선별기가 사용되지만, 본 연구에서는 KC3 Knelson Concentrator를 이용한 연구를 수행하였다. 시료는 파쇄와 분쇄과정을 거쳐 1mm 이하로 준비하였으며, 주요 실험변수로 처리횟수, 시료 급광량, Bowl의 회전속도(G Force), 급수량, 자성산물 사전제거, 시료입도 그리고 시료품위 변화 등이 1차 조선정광 회수에 미치는 영향을 관찰하였다. KC3 Knelson Concentrator를 이용한 비중선별 실험결과 처리횟수, 급광량, 시료입도 그리고 원 시료의 품위($WO_3%$) 등이 선별효율에 영향을 미치는 주요 실험변수임을 확인하였다. 실험결과 최적실험 조건에서 텅스텐의 품위와 회수율이 각각 $3.0%WO_3$와 90%인 1차 조선정광을 얻었다.

  • PDF

상동광상(上東鑛床)의 큰 규모와 작은 규모의 지화학적(地化學的) 대비연구(對比硏究) (Comparative Study of Geochemistry of the Sangdong Skarn Orebody in a Large Scale and Small Scales)

  • 문건주
    • 자원환경지질
    • /
    • 제19권spc호
    • /
    • pp.113-119
    • /
    • 1986
  • A characteristic mineralogical zonal distribuion is observed in a large scale(whole ore- body) small scales(handy specimens). They show similar chemical variations: most of elements except CaO were supplied by hydrothermal fluids to form skarns. Garnets occuring in the pyroxene-garnet skarn have a wide range of chemical composition ranging from andradite to grossularite, while individual grains of the garnets also show a similar zonation of chemical composition varied between grossularite and andradite. Highly contained Mo-bearing scheelites are generally concentrated in the central part of the Sang- dong skarn orebody. Similarly, some large grains of scheelite show a nice zonation due to different contents of Mo, highly enriched in the core of the scheelite crystal. This geochemical similarity in the large scale and small scales suggests the Sangdong skarn formation was achieved under a certain chemical environment, and detailed studies on a small scale texture could be a clue to understand a whole ore deposit.

  • PDF

상동중석광상(上東重石鑛床)의 현미경적(顯微鏡的) 연구(硏究) (Microscopic Study of Sangdong Tungsten Ore Deposit, Korea)

  • 이대성;김서운
    • 자원환경지질
    • /
    • 제2권1호
    • /
    • pp.1-12
    • /
    • 1969
  • In the Sangdong Mine area, Taebaegsan series (Pre-Cambrian) and Chosun System (Cambro-ordovician) are widely distributed. The Chosun System consists of Yangdug Series (Jangsan Quartzite and Myobong Slate) and The Great Limestone Series (Pungchon Limestone, Shesong Shale, Hwajeol Formation and Dongjeom Quartzite). The mineralized zone containing the main ore body of the Sangdong Mine was developed in the Myobong Slate formation. The result of the field and microscopic study on the mineral paragenesis and it's wall rock alteration in the tungsten ore deposit shows the following features. The orogenic movements of the Post-Chosun System in the Hambaeg Geosyncline are closely related to the tungsten ore deposition in the area, the ore minerals are composed mainly of scheelite, powelite molybdenite and sulfide minerals, and gangue minerals are hornblende, diopside, garnet, quartz, phlogopite, tremolite, biotite, muscovite, fluorite, etc., main ore body was enriched by scheelite bearing quartz vein filling into interstices of formerly mineralized zones, and the minor faults, faults of N $60^{\circ}-70^{\circ}W$, $45^{\circ}-60^{\circ}NE$ and joints, which were formed at the end of the mineralization and the slate. Country rock of the ore body was altered into the following several zones from the outside to the inside; lowgrade recrystalline aureole, silicified sericite zone, and diopside-hornblende zone. Under the microscopic observation of 195 samples taken from throughout ore body can be classified into 10 different groups by their mineral paragenesis as shown in table 2. The garnet-diopside group is primary skarn and it shows gradational change to the groups of later stage by the successive processes of metasomatism. From the stage of quartz-bearing group, the dissemination of scheelite is seen. The crystallization of scheelite in the bed started with the quartz deposition and continued to the last stage when quartz vein intruded into the main ore body. In the field and the under ground investigation a durable limestone bed in thickeness about 20 meters and their remnants in ore body are observed and under microscope calcite remnants are recognized. Hence it is posturated that the ore material moved up through the faults, shear zones or feather cracks and was assimilated with the interbeded limestone, after that the body was affected by the successive differentiated ore solution by gradational increasing in $SiO_2$, $K_2O$ and $H_2O$. Evidently this ore deposit shows the features resulted from pyrometasomatic processes.

  • PDF

회중석의 염소화 생성물로부터 고순도 WO3의 합성 (Synthesis of High Purity Tungsten Oxide with Tungsten Chloride from the Chlorination of Scheelite)

  • 엄명헌;박용성;이철태
    • 공업화학
    • /
    • 제4권4호
    • /
    • pp.798-806
    • /
    • 1993
  • 본 연구는 유동층 반응기에서 회중석의 염소화 생성물인 텅스텐염화물로부터 고순도 tungsten oxide를 합성하기 위해 수행하였다. 텅스텐염화물은 용해시작 불과 1분 이내에 거의 완전히 $H_2O_2$ 용액에서 용해되었으며 적정용해조건은, $H_2O_2$의 농도 0.5%, 용해온도 $15^{\circ}C$, 텅스텐 염화물 0.5g에 대한 $H_2O_2$용액의 양은 30ml이었다. 이 조건하에서 얻어진 용해 생성물로부터 제조되어진 텅스텐 산화물은 순도 99.53%의 $WO_3$였다.

  • PDF

울산(蔚山) 철(鐵)·중석(重石) 광상(鑛床)의 성인(成因) (On the Genesis of Ulsan Iron-Tungsten Deposits)

  • 박기화;박희인
    • 자원환경지질
    • /
    • 제13권2호
    • /
    • pp.104-116
    • /
    • 1980
  • The Ulsan mine is one of the largest contact metasomatic magnetite and scheelite deposits in the southeastern part of Korea. Mineralization at the Ulsan mine is localized along the contact between upper Cretaceous volcanic rocks and age unknown limestone which were intruded by 58 m.y. -old biotite-horndlende granite. General zonal sequence of skarn toward crystalline limestone from limestone-volcanics contact is grandite, grandite-salite and salite zones. On the otherhand volcanics origin skarns exhibits zonal sequences toward hornfels from boundary with limestone is garnet, garnet-epidote, and epidote zone. Compositions of garnets and clinopyro xenes are determined by the X-ray diffraction and reflective indecies. Local brecciation of these early skarns were followed by formation of the later skarn as zoned patches, breccia fillings and cross-cutting veins. Paragenetic sequence of late skarn minerals which is exhibited in the zoned patches and veins is an overlapping progression with time from andradite through hedenbergite or actinolite, quartz to calcite deposition. Magnetite metallization followed early formed skarns and pyrite pyrrhoite, sphalerite, galena, tennantite, scheelite and arsenopyrite deposition were simultaneously with hedenbergite, quartz and calcite of late skarn. Filling temperatures of fluid inclusions in calcites range from $160^{\circ}$ to $280^{\circ}C$.

  • PDF

Facile Synthesis of SrWO4:Eu3+ Phosphors

  • Bharat, L. Krishna;Yu, Jae Su
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.643-643
    • /
    • 2013
  • Recently, synthesis of low-dimensional nanostructures is gaining more importance due to their structural properties and growing potential applications. On the other hand, luminescent materials doped with rare earth ions have drawn immense attention. The commercial phosphors are based on many host materials. Among them, tungstates are being currently investigated by many research groups owing to a wide range of applications. Tungstates are formed by different metal cations (e.g., SrWO4, Na2WO4, NiWO4, Cr2WO6, and ZrW2O8) and their structure depends on the size of the metal cation. Tungstates with large bivalent cations (${\gg}0.1\;nm$) have the scheelite structure and the wolframite structure with smaller ions (<0.1 nm). Strontium tungstate has the scheelite structure which is tetragonal with space group I41/a. The luminescent properties of the tungstate have been extensively explored in application fields such as sensors, detectors, lasers, photoluminiscent devices, photo catalysts, etc. In this work, we synthesized SrWO4 phosphors with different Eu3+ concentrations by using a facile route. The morphology was analyzed by using a field-emission scanning electron microscope, which exhibits the spherical shape. Transmission electron microscope image revealed the spheres composed of nanoparticles. X-ray diffraction patterns confirmed their tetragonal shape. The photoluminescence excitation and emission spectra were analyzed by varying the Eu3+ concentration, which shows a dominant red emission.

  • PDF

대화(大華) 중석휘수연광상산(重石輝水鉛床産) 광물중(鍵物中)의 유체포유물(流體包有物)에 관(關)한 연구(硏究) (A Study on the Fluid Inclusions in the Minerals from the Dae Hwa Tungsten-Molybdenum Deposits)

  • 박희인;최석원
    • 자원환경지질
    • /
    • 제7권2호
    • /
    • pp.63-78
    • /
    • 1974
  • Daehwa tungsten-molybdenum deposits is fissure filled quartz veins occurring in Precambrian granite gneiss adjacent to the contact with Mesozoic biotite granite mass. Essential ore minerals are molybdenum and wolframite accompaning scheelite, cassiterite, chalcopyrite, pyrrhotite, pyrite and bismuthinites. Gangue minerals are quartz and little muscovte, fluorite, beryl and Carbonate minerals. Fluid inclusions in quartz, fluorite, beryl, scheelite and calcite have filling temperature ranges of $170-353^{\circ}C$. According to the studies of mineral paragenesis and filling temperature of fluid inclusion indicate that main tungsten and molybdnum mineralization have taken place with the minerals whose filling temperature ranges 205 to $353^{\circ}C$. Liquid $CO_2$ bearing fluid inclusions are characteristic in the quartz and early fluorite of tungsten and tungsten bearing molybdenum veins but hardly recognized from molybdemun veins. Estimated $CO_2$ concentration according to diagram proposed by the Takenouchi ranges from 10 to 20wt%. These facts suggest that tungsten mineralization may be related to the $CO_2$ content of the hydrothermal solution during the mineralizing period.

  • PDF

울산 광산의 철-텅그스텐 스카른화작용 (Magnetite and Scheelite-Bearing Skarns in Ulsan Mine, Korea)

  • 최선규;이마이 나오야
    • 자원환경지질
    • /
    • 제26권1호
    • /
    • pp.41-54
    • /
    • 1993
  • 경상분지 남동부에 위치한 울산광산은 석회암을 교대한 전형적인 calcareous skarn강상으로 Fe W광화작용 이외에도 Cu, Pb, Zn, As, Bi, Ni, Co, Cr, Ag, Sn, In, Te, Sb 등이 수반되는 다금속광화작용의 특성을 보여주고 있다. 본 광상은 직립에 가까운 파이프상 광체로 산출되며, 자철석과 함께 북측의 혼펠스와의 경계부근에 회중석이 부분적으로 광염되어 있다. 본 광상의 스카른대는 석회암 및 혼펠스를 교대한 괴상 스카른과 양자를 각기 절단하는 맥상스카른으로 구분된다. 괴상스카른은 석회암 기원의 스카른이 주체를 이루며, 이러한 스카른대는 규회석 스카른, 석류석 스카른, 단사휘석-석류석 스카른, 단사휘석 스카른으로 분류되며, 부분적으로 스카른대 주변부를 따라 거정질 방해석대가 존재하고 있다. 스카른 진화과정은 초기스카른 및 후기스카른의 두 시기로 분류되며, 초기스카른은 prograde한 스카른 생성시기로 초기에는 규회석, Mg-rich 단사휘석, Al-rich garnet가 주로 정출되며 광석광물은 거의 불모한 시기이나, 초기스카른의 말기로 진행됨에 따라 자철석과 회중석이 정출된다. 그리고, 후기스카른의 전반기까지는 Fe-rich 단사휘석, Fe-rich garnet와 함께 자철석 회중석이 연속적으로 정출되었으나, 후기스카른의 중기부터는 Ni, Co, As, Cu, Zn, Fe, Bi 등의 황화광물이 정출되는 다금속광화 작용의 특정을 보인다. 또한, 최후기 열수작용시기에는 섬아연석과 방연석 등의 Base-metal 황화광물이 주로 정출되는 연 아연 광화작용의 양상을 나타낸다. 이러한 각 광화시기별 스카른 광물과 광석광물의 변화양상은 고온의 열수용액이 천부로 유출되는 과정에서 광화용액의 온도가 급격히 떨어진 결과 (telescope)에 기인된 것으로 사료된다.

  • PDF

Pycnometric and Spectroscopic Studies of Red Phosphors Ca2+(1-1.5x)WO4:Eu3+x and Ca2+(1-2x)WO4:Eu3+x,Na+x

  • Cho, Seon-Woog
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2769-2773
    • /
    • 2013
  • Red phosphors $Ca_{(1-1.5x)}Eu_xWO_4$ and $Ca_{(1-2x)}Eu^_xNa_xWO_4$ were synthesized with various concentrations x of $Eu^{3+}$ ions by using a solid-state reaction method. The crystal structure of the red phosphors were found to be a tetragonal scheelite structure with space group $I4_1/a$. X-ray diffraction (XRD) results show the (112) main diffraction peak centered at $2{\theta}=28.71^{\circ}$, and indicate that there is no basic structural deformation caused by the vacancies ${V_{Ca}}^{{\prime}{\prime}}$ or the $Eu^{3+}$ (and $Na^+$) ions in the host crystals. Densities of $Ca_{(1-1.5x)}Eu_xWO_4$ were measured on a (helium) gas pycnometer. Comparative results between the experimental and theoretical densities reveal that $Eu^{3+}$ (and $Na^+$) ions replace the $Ca^{2+}$ ions in the host $CaWO_4$. Also, the photoluminescence (PL) emission and photoluminescence excitation (PLE) spectra show the optical properties of trivalent $Eu^{3+}$ ions, not of divalent $Eu^{2+}$. Raman spectra exhibit that, without showing any difference before and after the doping of activators to the host material $CaWO_4$, all the gerade normal modes occur at the identical frequencies with the same shapes and weaker intensities after the substitution. However, the FT-IR spectra show that some of the ungerade normal modes have shifted positions and different shapes, caused by different masses of $Eu^{3+}$ ions (or $Na^+$ ions, or ${V_{Ca}}^{{\prime}{\prime}}$ vacancies) from $Ca^{2+}$.