• Title/Summary/Keyword: scent ester

Search Result 4, Processing Time 0.019 seconds

Synthesis of Methyl 3-methyloctanoate, the Key Perfume Component of African Orchid Aerangis confusa (아프리카 난 Aerangis confusa의 향기성분 methyl 3-methyloctanoate의 합성)

  • Kim, Hyun-Ok;Kim, Young-Ju;Kim, Bieong-Kil;Seu, Young-Bae
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.292-295
    • /
    • 2005
  • Synthesis of methyl 3-methyloctanoate, a perfume component isolated from African orchid Aerangis confusa (or Aerangis kirkii) was achieved starting from itaconic acid in 9 steps. Itaconic acid is one of the cheapest organic compounds which is the fermentation product of microorganism Asp. terreus. As the key intermediate, 2-methyl-1,4-butanediol 4-acetate was obtained through the enzymatic regioselective hydrolysis of 2-methyl-1,4-butanediol diacetate with lipase. After Grignard reaction and oxidation, 3-methyloctanoic acid was obtained and converted to the various corresponding scented esters with a variety of alkyl alcohols, and the resulting fragrancy esters are expected to be utilized as the aroma additive materials in cosmetics, drinks and foods.

Fragrance Composition in Six Tree Peony Cultivars

  • Zhao, Jing;Hu, Zeng-Hui;Leng, Ping-Sheng;Zhang, Hui-Xiu;Cheng, Fang-Yun
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.617-625
    • /
    • 2012
  • Tree peony is a traditional famous flower of China, and plays an important role in Chinese traditional culture. But the floral scent of tree peony in vivo is little known. In this study, in order to explore the floral composition of tree peony, floral volatiles of six cultivars, including Paeonia suffruticosa 'Zhaofen' (ZF), P. suffruticosa 'Luoyanghong' (LYH), P. ostii 'Fengdanbai' (FDB), P. ${\times}$ lemonei 'High noon' (HN), P. ${\times}$ lemonei 'Renown' (R), and P. rockii 'Gaoyuanshenghuo' (GYSH) were collected by dynamic headspace and then identified by Automated Thermal Desorption-Gas Chromatography/Mass Spectometry. The results showed that floral fragrances of the six cultivars were qualitatively and quantitatively distinct. A total of 105 volatiles involving ten categories were detected. But not all volatile categories were emitted from these cultivars. The six peony cultivars emitted some shared compounds and peculiar compounds. The total released amounts of volatiles emitted from six cultivars were found significantly different, which was greatest for 'GYSH'. The most abundant volatile compounds detected from 'ZF', 'LYH', 'FDB', 'HN', 'R', and 'GYSH' were respectively ${\alpha}$-pinene, 2,3-dihydroxy propanal, 3-methyl-1-butanol, 2-ethyl-1-hexanol, acetic acid 1-methylethyl ester, and 5-ethyl-2,2,3-trimethyl heptane. This result may contribute to exploring the biosynthesis and emission mechanism of floral scent in tree peony.

Analysis of Hydrosol Components through Distillation Extraction of the Sunbigi Tree(Vitex rotundifolia L.f.) Fruit of the Wild Birch Tree Native to the Coast (해안가에 자생하는 순비기나무 열매의 증류추출을 통한 하이드로졸 성분분석)

  • Jung, Y.O.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.1
    • /
    • pp.5-13
    • /
    • 2022
  • Sunbigi tree(Vitex rotundifolia L.f.), which grows wild in the southern part of Korea and along the coast of the West Sea, has a lot of useful value in terms of resource utilization. Since ancient times, it has been used as folk medicine or herbal medicine in the private sector. Although the leaves and stems have a strong scent, the fruit also has a strong scent, so there are some studies on extracting essential oil from the fruit of Sunbigi tree and analyzing the ingredients, but there are few studies on the fragrance component by extracting hydrosol. The reason is that the fruits are hard and it is difficult to identify the active ingredients contained in the general extraction method. Therefore, in this study, the results of analyzing the components contained in the fragrance of hydrosol obtained by extracting hard fruits at high temperature by different extraction methods are as follows. 1. The extraction condition with the highest flavonoid content was 30.57 mg/g with ethanol, followed by hot water extract at 18.26 mg/g and water extract at 9.69 mg/g with the lowest. 2. As a result of distillation extraction from the fruit of Sunbigi tree, the fragrance of hydrosol is 3-Methyl-2-butenoic acid, cyclobutyl ester, Eucalyptol, L-alpha-Terpineol, 1H-Cycloprop[e]azulen-7-ol, decahydro-1 ,1,7-trimethyl-4-methylene-, [1ar-(1a.alpha.,4a.alpha.,7.beta.,7a.beta.,7b.alpha.)] were found to be many.

Comparative analysis of volatile organic compounds from flowers attractive to honey bees and bumblebees

  • Dekebo, Aman;Kim, Min-Jung;Son, Minwoong;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.62-75
    • /
    • 2022
  • Background: Pollinators help plants to reproduce and support economically valuable food for humans and entire ecosystems. However, declines of pollinators along with population growth and increasing agricultural activities hamper this mutual interaction. Nectar and pollen are the major reward for pollinators and flower morphology and volatiles mediate the specialized plant-pollinator interactions. Limited information is available on the volatile profiles attractive to honey bees and bumblebees. In this study we analyzed the volatile organic compounds of the flowers of 9 different plant species that are predominantly visited by honey bees and bumblebees. The chemical compositions of the volatiles were determined using a head space gas chromatography-mass spectrometry (GC-MS) method, designed to understand the plant-pollinator chemical interaction. Results: Results showed the monoterpene 1,3,6-octatriene, 3,7-dimethyl-, (E) (E-𝞫-ocimene) was the dominating compound in most flowers analyzed, e.g., in proportion of 60.3% in Lonicera japonica, 48.8% in Diospyros lotus, 38.4% Amorpha fruticosa and 23.7% in Robinia pseudoacacia. Ailanthus altissima exhibited other monoterpenes such as 3,7-dimethyl-1,6-octadien-3-ol (𝞫-linalool) (39.1%) and (5E)-3,5-dimethylocta-1,5,7-trien-3-ol (hotrienol) (32.1%) as predominant compounds. Nitrogen containing volatile organic compounds (VOCs) were occurring principally in Corydalis speciosa; 1H-pyrrole, 2,3-dimethyl- (50.0%) and pyrimidine, 2-methyl- (40.2%), and in Diospyros kaki; 1-triazene, 3,3-dimethyl-1-phenyl (40.5%). Ligustrum obtusifolium flower scent contains isopropoxycarbamic acid, ethyl ester (21.1%) and n-octane (13.4%) as major compounds. In Castanea crenata the preeminent compound is 1-phenylethanone (acetophenone) (46.7%). Conclusions: Olfactory cues are important for pollinators to locate their floral resources. Based on our results we conclude monoterpenes might be used as major chemical mediators attractive to both honey bees and bumblebees to their host flowers. However, the mode of action of these chemicals and possible synergistic effects for olfaction need further investigation.