• 제목/요약/키워드: scattering film

검색결과 299건 처리시간 0.028초

X선촬영시(X線撮影時) 피사체(被寫體) 두께에 따른 격자비(格子比) 선정(選定)에 관한 연구(硏究) (Studios in Selected Grid Ratio of Objective Thickness on X-ray Exposure)

  • 윤철호;추성실;허준
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제5권1호
    • /
    • pp.21-34
    • /
    • 1982
  • When unattenuated x-ray radiation passes through the object it is transmitted and scattered from objectes and impinging on the film. During this process certain radiation is absorbed within the object and others transmitted in reduced scattering. The scattering radiation influence upon radiation image quality, confining x-ray beam which means scattering radiation produce increased fog on x-ray film image and as a consequence decrease contrast and less detail of the film there for the elimination of fog and for absorbing scattered radiation, the grid has been used between the object and the film in order to rid of scattering rays. Using grid is good method for the qualification of the better image as well as in using air gap technique. The grid is easy to manipulate and promote good efficiency which is defined by ICRU and JIS. It is the purpose to study for eliminating scattered radiation from the tissue equivalent acryl phantom using grid, we have studied and evaluated the grid permeability about the x-ray exposure, the selection of grid ratio according to phantom thickness, on x-ray exposure are performed as follows. 1. The penetrating ratio of primary x-ray is remarkably decreased by increasing of the grid ratio, but it is almost not influenced in KVP difference and phantom thickness. 2. The scattered radiation is proportionaly increased by thickness of the phantom, having nothing to do with grid ratios. 3. The relative between the penetration rate of primary and secondary x-ray is improved by increasing grid ratio, and decreased by phantom thickness, and slightly decreased by high tube voltage. 4. The grid of 5:1 and 10:1 ratio are adequate to the phantom of 10cm and 15cm thickness, respectively.

  • PDF

실리콘 박막 태양전지 전면 전극용 ZnO : Al 투명전도막의 표면형상 및 산란광 특성 (Characterization of Surface Morphology and Light Scattering of Transparent Conducting ZnO:Al Films as Front Electrode for Silicon Thin Film Solar Cells)

  • 김영진;조준식;이정철;왕진석;송진수;윤경훈
    • 한국재료학회지
    • /
    • 제19권5호
    • /
    • pp.245-252
    • /
    • 2009
  • Changes in the surface morphology and light scattering of textured Al doped ZnO thin films on glass substrates prepared by rf magnetron sputtering were investigated. As-deposited ZnO:Al films show a high transmittance of above 80% in the visible range and a low electrical resistivity of $4.5{\times}10^{-4}{\Omega}{\cdot}cm$. The surface morphology of textured ZnO:Al films are closely dependent on the deposition parameters of heater temperature, working pressure, and etching time in the etching process. The optimized surface morphology with a crater shape is obtained at a heater temperature of $350^{\circ}C$, working pressure of 0.5 mtorr, and etching time of 45 seconds. The optical properties of light transmittance, haze, and angular distribution function (ADF) are significantly affected by the resulting surface morphologies of textured films. The film surfaces, having uniformly size-distributed craters, represent good light scattering properties of high haze and ADF values. Compared with commercial Asahi U ($SnO_2$:F) substrates, the suitability of textured ZnO:Al films as front electrode material for amorphous silicon thin film solar cells is also estimated with respect to electrical and optical properties.

Tip-Enhanced Raman Scattering with a Nanoparticle-Functionalized Probe

  • Park, Chan-Gyu;Kim, Ju-Young;Lee, Eun-Byoul;Choi, Han-Kyu;Park, Won-Hwa;Kim, Jin-Wook;Kim, Zee-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1748-1752
    • /
    • 2012
  • We carried out the tip-enhanced Raman scattering (TERS) with a tip that is functionalized with a Aunanoparticle (AuNP, with a diameter of 250 nm). The AuNP tip is fabricated by a direct mechanical pickup of a AuNP from a flat substrate, and the TERS signal from the AuNP tip - organic monolayer - Au thin film (thickness of 10 nm) is recorded. We find that such a AuNP-tip interacting with a thin film routinely yields signal enhancement larger than ${\sim}10^4$, which is sufficient not only for local (with detection area of ~200 $nm^2$) Raman spectroscopy, but also the nanometric imaging of organic monolayers within a reasonable acquisition time (~20 minutes/image).

Controlled Assembly of Gold Nanoprism and Hexagonal Nanoplate Films for Surface Enhanced Raman Scattering

  • Lee, Doo-Ri;Hong, Soon-Chang;Park, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3575-3580
    • /
    • 2011
  • This paper reports a methodology for preparing close-packed two dimensional gold nanoprism films and hexagonal nanoplate films at a hexane/water interface. By controlling the concentration of linker molecules in the hexane layer and the temperature of the colloid solution, highly ordered close-packed nanoplate arrays can be fabricated. These films were investigated to compare their corresponding surface enhanced Raman scattering (SERS) efficiencies. It was demonstrated that the Au nanoprism films resulted in a stronger SERS enhancement than the Au hexagonal nanoplate films. The difference in the SERS enhancement is attributed to the film array difference, demonstrating that Au nanoprism films have a higher line contact density than their Au hexagonal analogues.

Crystallization of Ba-ferrite/sapphire(001) Thin Films Studied by Real-Time Synchrotron X-ray Scattering

  • Cho, Tae-Sik
    • Journal of Magnetics
    • /
    • 제7권2호
    • /
    • pp.51-54
    • /
    • 2002
  • The crystallization of amorphous Ba-ferrite/sapphire(001) thin films was studied in real-time synchrotron x-ray scattering experiments. In the sputter-grown amorphous films, we found the existence of epitaxial $Fe_3O_4$ interfacial crystallites (50-${\AA}$-thick), well aligned $[0.03^circ$full-width at half-maximum (FWHM)] to the sapphire [001] direction. The amorphous precursor was crystallized to epitaxial Ba-ferrite and \alpha-Fe_2O_3$grains in two steps; i) the nucleation of crystalline \alpha-Fe_2O_3$ phase started at $300^circ{C}$ together with the transformation of the $Fe_3O_4$ crystallites to the \alpha-Fe_2O_3$ crystallites, ii) the nucleation of Ba-ferrite phase occurred at temperature above $600^circ{C}$. In the crystallized films irrespective of the film thickness, the crystal domain size of the \alpha-Fe_2O_3$grains was about 250 ${\AA}$ in the film plane, similar to that of the Ba-ferrite grains.

Si(100) 기판 위에 성장돈 3C-SiC 박막의 물리적 특성 (Physical Characteristics of 3C-SiC Thin-films Grown on Si(100) Wafer)

  • 정귀상;정연식
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.953-957
    • /
    • 2002
  • Single crystal 3C-SiC (cubic silicon carbide) thin-films were deposited on Si(100) wafer up to the thickness of 4.3 ${\mu}{\textrm}{m}$ by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane; {CH$_{3}$$_{6}$ Si$_{2}$) at 135$0^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC film was 4.3 ${\mu}{\textrm}{m}$/hr. The 3C-SiC epitaxial film grown on Si(100) wafer was characterized by XRD (X-ray diffraction), AFM (atomic force microscopy), RHEED (reflection high energy electron diffraction), XPS (X-ray photoelecron spectroscopy), and Raman scattering, respectively. Two distinct phonon modes of TO (transverse optical) near 796 $cm^{-1}$ / and LO (longitudinal optical) near 974$\pm$1 $cm^{-1}$ / of 3C-SiC were observed by Raman scattering measurement. The heteroepitaxially grown film was identified as the single crystal 3C-SiC phase by XRD spectra (2$\theta$=41.5。).).

Surface-Engineered Graphene surface-enhanced Raman scattering Platform with Machine-learning Enabled Classification of Mixed Analytes

  • Jae Hee Cho;Garam Bae;Ki-Seok An
    • 센서학회지
    • /
    • 제33권3호
    • /
    • pp.139-146
    • /
    • 2024
  • Surface-enhanced Raman scattering (SERS) enables the detection of various types of π-conjugated biological and chemical molecules owing to its exceptional sensitivity in obtaining unique spectra, offering nondestructive classification capabilities for target analytes. Herein, we demonstrate an innovative strategy that provides significant machine learning (ML)-enabled predictive SERS platforms through surface-engineered graphene via complementary hybridization with Au nanoparticles (NPs). The hybridized Au NPs/graphene SERS platforms showed exceptional sensitivity (10-7 M) due to the collaborative strong correlation between the localized electromagnetic effect and the enhanced chemical bonding reactivity. The chemical and physical properties of the demonstrated SERS platform were systematically investigated using microscopy and spectroscopic analysis. Furthermore, an innovative strategy employing ML is proposed to predict various analytes based on a featured Raman spectral database. Using a customized data-preprocessing algorithm, the feature data for ML were extracted from the Raman peak characteristic information, such as intensity, position, and width, from the SERS spectrum data. Additionally, sophisticated evaluations of various types of ML classification models were conducted using k-fold cross-validation (k = 5), showing 99% prediction accuracy.

직충돌 이온산란 분광법을 사용한 MgO(100) 면에 성장된 BaTiO3막의 구조해석 (Structure Analysis of BaTiO3 Film on the MgO(100) Surface by Impact-Collision Ion Scattering Spectroscopy)

  • 황연;이태근
    • 한국세라믹학회지
    • /
    • 제43권1호
    • /
    • pp.62-67
    • /
    • 2006
  • Time-of-flight impact-collision ion scattering spectroscopy (TOF-ICISS) using 2 keV $He^+$ ion was applied to study the geometrical structure of the $BaTiO_3$ thin film which was grown on the MgO(100) surface. Hetero-epitaxial $BaTiO_3$ layers were formed on the MgO(100) surface by thermal evaporation of titanium followed first by oxidation at $400^{\circ}C$, subsequently by barium evaporation, and finally by annealing at $800^{\circ}C$. The atomic structure of $BaTiO_3$ layers was investigated by the scattering intensity variation of $He^+$ ions on TOF-ICISS and by the patterns of reflection high energy electron diffraction. The scattered ion intensity was measured along the <001> and <011> azimuth varying the incident angle. Our investigation revealed that perovskite structured $BaTiO_3$ layers were grown with a larger lattice parameter than that of the bulk phase on the MgO(100) surface.