• Title/Summary/Keyword: scattering film

Search Result 299, Processing Time 0.032 seconds

Effect of Substrate Bias Voltage on DLC Films Prepared by ECR-PECVD (ECR-PECVD 방법으로 제작된 DLC 박막의 기판 Bias 전압 효과)

  • 손영호;정우철;정재인;박노길;김인수;김기홍;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.328-334
    • /
    • 2000
  • DLC (Diamond-Like Carbon) films were deposited by ECR-PECVD (electron cyclotron resonance plasma-enhanced chemical vapor deposition) method with the variation of substrate bias voltage under the others are constant except it. We have investigated the ion bombardment effect induced by the substrate bias voltage on films during the deposition of film. The characteristics of the film were analyzed using the Dektak surface profiler, SEM, FTIR spectroscopy, Raman spectroscopy and Nano Indentation tester. FTIR spectroscopy analysis shows that the amount of dehydrogenation in films was increased with the increase of substrate bias voltage and films thickness was decreased. Raman scattering analysis shows that integrated intensity ratio $(I_D /I_G)$ of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased. From these results, it can be concluded that films deposited at this experimental have the enhanced characteristics of DLC because of the ion bombardment effect on films during the deposition of film.

  • PDF

The Study on Characteristics of a-C:H Films Deposited by ECR Plasma (전자회전공명 플라즈마를 이용한 a-C:H 박막의 특성 연구)

  • 김인수;장익훈;손영호
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.224-231
    • /
    • 2001
  • Hydrogenated amorphous carbon films were deposited by ERC-PECVD with deposition conditions, such as ECR power, gas composition of methane and hydrogen, deposition time, and substrate bias voltage. The characteristics of the film were analyzed using the AES, ERDA, FTIR. Raman spectroscopy and micro hardness tester. From the results of AES and ERDA, the elements in the deposited film were confirmed as carbon and hydrogen atoms. FTIR spectroscopy analysis shows that the atomic bonding structure of a-C:H film consisted of sp³and sp²bonding, most of which is composed of sp³bonding. The structure of the a-C:H films changed from CH₃bonding to CH₂or CH bonding as deposition time increased. We also found that the amount of dehydrogenation in a-C:H films was increased as the bias voltage increased. Raman scattering analysis shows that integrated intensity ratio (I/sub D//I/sub G/) of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased.

  • PDF

Dependence of Localized Surface Plasmon Properties on the Shape of Metallic Nanostructures (금속 나노 구조체의 형상에 따른 국소 표면 플라즈몬 특성)

  • Kim, Joo-Young;Cho, Kyu-Man;Lee, Taek-Sung;Kim, Won-Mok;Lee, Kyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.77-77
    • /
    • 2008
  • 금(Au)이나 은(Ag)과 같은 귀금속 물질로 형성된 금속 나노 구조체는 표면 플라즈몬 공진(Surface Plasmon Resonance, SPR) 현상과 이의 국부 환경(local environment) 변화에 대해 민감한 의존성으로 인하여 생화학적 센서로의 응용이 주목 받고 있다. 표면 플라즈몬 공진은 광 흡수와 광 산란을 수반하는데, 두 가지 특성 모두 분광학적 신호검출방식으로 센서에 응용가능하다. 이 중 광 산란을 이용하는 방식은 광원의 배경잡음 효과가 배제되기 때문에 단일 입자 검출에 유리하다. 광 흡수와 광 산란 특성은 금속 나노 구조체는 크기, 형상, 주변 매질, 물질의 선택에 따라서 영향을 받는다. 본 연구에서는 금 나노 디스크(nanodisc)의 형상에 따라서 여기 되는 표면 플라즈몬이 광 흡수와 광 산란 특성에 미치는 영향을 가시광과 근적외선 영역에 대해서 불연속 쌍극자 근사법(Discrete Dipole Approximation, DDA)을 이용하여 전사모사(simulation) 하였다. 금 나노 디스크의 형상과 플라즈몬 특성 간의 관계는 공명 파장과 산란 양자 거둠율(scattering quantum yield, $\eta$)을 이용하여 분석하였고, 센서로서의 응용을 가늠하기 위해 주변 매질의 굴절률을 조절하여 그에 따른 민감도(sensitivity )를 비교하였다. 나노 디스크의 모양이 판상에 가까워질수록 공명 파장은 적색 편이하였고 광 산란 효율과 민감도는 증가하는 현상이 나타났다. 또한, 산란 양자 거둠율은 증가하다가 완만하게 감소하는 경향이 나타났다.

  • PDF

Microstructure and Giant Magnetoresistance of AgCo Nano-granular Alloy Films (Ag-Co합금박막의 두께에 따르는 미세구조 변화 및 자기저항 거동)

  • 이성래;김세휘
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.131-137
    • /
    • 1998
  • The thickness dependence of the microstructure and the giant magnetoresistance behavior of co-evaporated Co-Ag granular alloy films were investigated. The maximum magnetoresistance ratio of 24% was observed in the the as-deposited state of the 40 at. % Co alloy having 200 nm thickness. The surface scattering contributed about 20% to the total resistivity in the 20 nm thick films. The MR ratio dropped sharply when the film thickness was below 50 nm. The reduction in the Co particle size and the increase in solid solubility of Ag in fcc Co when the film thickness decreased were observed using a high resolution TEM. The aspect ratio of the Co particles was also affected by the film thickness. Those microstructural changes as well as the surface induced spin flipping play a significant role in the $\Delta$p change.

  • PDF

A Study on photoisomerization of cellulose acetate containing disperse red 1 (Disperse red 1을 함유하고 있는 셀룰로오스 아세테이트의 광이성화에 관한 연구)

  • Lee, Soo;Park, Keun-Ho;Jung, Dong-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.273-279
    • /
    • 1999
  • In order to study a reversible photoisomerization of disperse red l(DR 1) attached on natural polymers, cellulose acetate containing DR l(DR 1/CA adduct) was prepared, and the changes of UV/VIS spectra of its solution(benzene, DMAc). thick film, and LB film were investigated by alternate irradiation with two different wave length lights. DR 1/CA adduct was prepared through tosylation of partially hydrolyzed cellulose acetate followed by reaction with DR 1 at $100^{\circ}C$ in pyridine. From the UV/VIS spectra of DR 1/CA adduct dissolved in DMAc solvent including phosphoglyceride before and after irradiation at 360nm and 45Onm, we found out the changes of UV/VIS spectra were reversible. In addition, the change of UV/VIS spectra of this adduct solution was strongly depended on the sorts of solvents and temperature. As the temperature was increased, UV/VIS spectra of this adduct solution in DMF showed blue shift. These results provided this solution could be applied to a temperature sensor. In the thick film case, we also obtained similar results with solution case. LB monolayer and trilayer from DR 1/CA adduct was obtained by scattering the solution including phosphoglyceride on water surface at the surface pressure of 8mN/m. After irradiation on that LB monolayer and trilayer, the reversible photoisomerization was also detected. From these results we concluded DR 1/CA adduct was suitable for the application to data storage and optical switch, etc.

Commissioning of neutron triple-axis spectrometers at HANARO

  • Hiraka, Haruhiro;Lee, Jisung;Jeon, Byoungil;Seong, Baek-Seok;Cho, Sangjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2138-2150
    • /
    • 2020
  • We report the status of the cold neutron triple-axis spectrometer (Cold TAS) and thermal neutron triple-axis spectrometer (Thermal TAS) installed at HANARO. Cold TAS, whose specifications are standard across the world, is in the final phase of commissioning. Proper instrument operation was confirmed through a feasibility study of phonon measurements and data analyses with resolution convolution. In contrast, Thermal TAS is in the initial phase of commissioning, and improvement of the monochromator drum is now in progress from the viewpoint of radiation shielding. In addition, we report recent activities in the development of neutron basic elements, that is, film-coated Si-wafer collimators, which are promising for use in triple-axis spectroscopy, particularly in Cold TAS.

Effect of Dynamic SGS Model in a Kerosene-LOx Swirl Injector under Supercritical Condition

  • Heo, Jun-Young;Hong, Ji-Seok;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.254-263
    • /
    • 2015
  • In this study, numerical simulations are carried out to investigate the dynamic SGS model effects in a Kerosene-LOx coaxial swirl injector under high pressure conditions. The turbulent model is based on large-eddy simulation (LES) with real-fluid transport and thermodynamics. To assess the effect of the dynamic subgrid-scale (SGS) model, the dynamic SGS model is compared with that of the algebraic SGS model. In a swirl injector under supercritical pressure, the characteristics of temporal pressure fluctuation and power spectral density (PSD) present comparable discrepancies dependant on the SGS models, which affect the mixing characteristics. Mixing efficiency and the probability density (PDF) function are conducted for a statistical description of the turbulent flow fields according to the SGS models. The back-scattering of turbulent kinetic energy is estimated in terms of the film thickness of the swirl injector.

Phonon bottleneck effects of InAs quantum dots

  • Lee, Joo-In;Sungkyu Yu;Lee, Jae-Young m;Lee, Hyung-Gyoo
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • We have studied the carrier relaxation of InAs/GaAs modulation-doped quantum dots depending on the excitation wavelength and modulation-doping concentration by using the time-ressolved spectroscopy. At the excitation below GaAs barrier band gap, the relaxation processes become very slow, implying to observe the phonon bottleneck effects. On the other hand, at the excitation far above GaAs band gap, phonon bottleneck effects are broken down due to Auger processes. Increasing modulation-doping concentration, the relaxation times, by virtue of Coulomb scattering between electrons in GaAs doped layer and carriers in InAs quantum dots, are observed to become fast.

  • PDF

Deposition and Optimization of Al-doped ZnO Thin Films Fabricated by In-line Sputtering System (인라인 스퍼터를 이용한 알루미늄 도핑된 산화아연 박막의 증착 및 특성 최적화 연구)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1236-1241
    • /
    • 2017
  • We deposited Al-doped ZnO (ZnO:Al) thin films on glass substrates ($200mm{\times}200mm$) by using in-line magnetron sputtering system. Effects of various deposition parameters such as working pressure, deposition power and substrate temperature on optoelectronic characteristics including surface-texture etching profiles were carefully investigated in this study. We found that relatively low working pressure and high deposition power offered to obtain enhanced conductivity and optical transmittance. Haze properties showed similar trend with the transmittance. Furthermore, surface-texture etching study exhibited good morphologies when the films were deposited at $200-300^{\circ}C$. On the basis of these optimizations, we could find the deposition region that produces highly transparent and conductive properties including efficient light scattering capability.

Physical Properties of UV curable coating on plastic (플라스틱용 자외선경화형 도료의 물성연구)

  • 김일재;문명준
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.61-80
    • /
    • 1998
  • To investigate in influence of photosensitizer used with benzophenone(BP) in the curing rate and physical properties of UV curable hard coating on plastic, we prepared UV curable clear and pigmented coatings with DEA, DMA, NPM and TEA as photosensitizer, respectively. The curing rate calculated from the decrease of the absorbance of acrylic double bond measured by FT-IR spectroscopy increased s follows; DEA>DMA>NPM>TEA. this order could be explained by the reactivity of diethylamino group of DEA and the ease of formation of activated complex between BP and photosensitizer during the curing process. In UV curable pigmented coatings, the order of curing rate increased as follows; DEA>DMA>TEA>NPM. It was found that the curing rate of the pigmented coating can be increased by light scattering of TiO$_2$. The hardness of coating film cured by photosensitization of DEA and DMA is higher than other photosensitizers due to the crosslinking reaction of DEA and DMA radical bound to polymer backbone.

  • PDF