• Title/Summary/Keyword: scattering dust

Search Result 130, Processing Time 0.026 seconds

Polarization as a Probe of Thick Dust Disk in Edge-on Galaxies: Application to NGC 891

  • Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2018
  • Radiative transfer models were developed to understand the optical polarizations in edge-on galaxies, which are observed to occur even outside the geometrically thin dust disk, with a scale height of ~0.2 kpc. In order to reproduce the vertically extended polarization structure, we find it is essential to include a geometrically thick dust layer in the radiative transfer model, in addition to the commonly-known thin dust layer. The models include polarizations due to both dust scattering and dichroic extinction which is responsible for the observed interstellar polarization in the Milky Way. It is found that the magnetic fields in edge-on galaxies are in general vertical (or poloidal) except the central part, where the magnetic fields are mainly toroidal. We also find that the polarization level is enhanced if the clumpiness of the interstellar medium, and the dichroic extinction by vertical magnetic fields in the outer regions of the dust lane are included in the radiative transfer model. The predicted degree of polarization outside the dust lane was found to be consistent with that (ranging from 1% to 4%) observed in NGC 891.

  • PDF

Retrieval of Dust Backscatter Coefficient using Quartz Raman Channel in Lidar Measurements (석영 라만 채널을 이용한 황사 후방 산란 계수 산출)

  • Noh, Young-Min;Mueller, Detlef;Lee, Han-Lim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.86-93
    • /
    • 2012
  • We present a retrieval method to obtain dust backscatter coefficient from the mixed Asian dust and pollutant layer. In the present study, vertically resolved quartz (silicon dioxide, silica) concentration was calculated using Raman scattering signals from quartz at 546 nm. Dust concentration was obtained based on typical mass percentage of quartz in Asian dust. The highest value of dust concentration at 3.7 km in March 21, 2010 was 22.3 and 10.9 ${\mu}gm^{-3}$ according to the quartz percentage in Asian dust as 65 and 30% based on literature survey, respectively. OPAC (Optical Properties of Aerosol and Clouds) simulations were conducted to calculate dust backscatter coefficient. The retrieved dust concentration was used as an input parameter for the OPAC calculations. Utilization of quartz Raman channel in Lidar measurements is considered useful for distinguishing optical properties of dust and nondust aerosol in the mixing state of Asian dust.

Construction of a Remote Monitoring System in Smart Dust Environment

  • Park, Joonsuu;Park, KeeHyun
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.733-741
    • /
    • 2020
  • A smart dust monitoring system is useful for obtaining information on rough terrain that is difficult for humans to access. One of ways to deploy sensors to gather information in smart dust environment is to use an aircraft in the Amazon rainforest to scatter an enormous amount of small and cheap sensors (or smart dust devices), or to use an unmanned spacecraft to throw the sensors on the moon's surface. However, scattering an enormous amount of smart dust devices creates the difficulty of managing such devices as they can be scattered into inaccessible areas, and also causes problems such as bottlenecks, device failure, and high/low density of devices. Of the various problems that may occur in the smart dust environment, this paper is focused on solving the bottleneck problem. To address this, we propose and construct a three-layered hierarchical smart dust monitoring system that includes relay dust devices (RDDs). An RDD is a smart dust device with relatively higher computing/communicating power than a normal smart dust device. RDDs play a crucial role in reducing traffic load for the system. To validate the proposed system, we use climate data obtained from authorized portals to compare the system with other systems (i.e., non-hierarchical system and simple hierarchical system). Through this comparison, we determined that the transmission processing time is reduced by 49%-50% compared to other systems, and the maximum number of connectable devices can be increased by 16-32 times without compromising the system's operations.

STaRS Gen 2: Sejong Radiative Transfer through Raman and Rayleigh Scattering in Dusty Medium

  • Chang, Seok-Jun;Lee, Hee-Won;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.81.2-81.2
    • /
    • 2021
  • Emission features formed through Raman scattering with atomic hydrogen provide unique and crucial information to probe the distribution and kinematics of a thick neutral region illuminated by a strong far-ultraviolet radiation source. We introduce a new 3-dimensional Monte-Carlo code to describe the radiative transfer of line photons subject to Raman and Rayleigh scattering with atomic hydrogen. In our Sejong Radiative Transfer through Raman and Rayleigh Scattering (STaRS) code, the position, direction, wavelength, and polarization of each photon is traced until escape. The thick neutral scattering region is divided into multiple cells. Each cell is characterized by its velocity and density, which ensures flexibility of the code in analyzing Raman-scattered features formed in a neutral region with complicated kinematics and density distribution. We are continuously developing STaRS to adopt the absorption and scattering effect by dust. This presentation introduces STaRS and its current state and study.

  • PDF

A Study on the Effects of Asian Dust to the Signal of Satellite Communication (위성통신에 미치는 황사의 영향에 관한 연구)

  • 홍완표;전영신
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.722-729
    • /
    • 2004
  • To analysis on the degradation of the satellite communication signal due to Asian dust that appeared on Korean peninsula during March and April 2004, EIRPs of L, S, C, Ku and Ka frequency bands of the downlink of satellite communication link were measured by Satellite Signal Monitoring Center located in Icheon, Korea. The measured EIRP values were compared to the total dust density and dust particle distribution that were measured using PM 10 and OPC by the Korea Meteorological Administration, and the possible correlation between three sets data were analyzed.

COMPARISON OF HENYEY-GREENSTEIN WITH DRAINE SCATTERNING PHASE FUNCTIONS (DRAINE 과 HENYEY-GREENSTEIN 산란 위상 함수 비교)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.25-29
    • /
    • 2008
  • Scattering of incident light by the interstellar dust is usually approximated by Henyey-Greenstein scattering phase function. Recently, Draine (2003) proposed a new analytic phase function with two parameters. We describe an algorithm to generate random numbers distributed according to the Draine’s function, and compare two phase functions. It is also derived exact solutions of two parameters for given values ${\langle}cos{\theta}{\rangle}$ and ${\langle}cos^2{\theta}{\rangle}$. It is found that Henyey-Greenstein function with g = ${\langle}cos{\theta}{\rangle}$ provides a good approximation for ${\lambda}\;>\;2000{\AA}$. At shorter wavelengths, more realistic phase function may be needed for radiative transfer models.

Development of Detection and Monitoring by Light Scattering in Real Time (광산란 방식 실시간 미세먼지 측정 및 모니터링 시스템 개발)

  • Lee, Nuri;Um, Hyun-Uk;Cho, Hyun-Sug
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.134-139
    • /
    • 2018
  • Extremely fine particles seriously affect people and are becoming a social problem. Conventional methods using the type of beta ray absorption are difficult to have real-time measurements and miniaturization for the acquisition of fine dust. In this paper, a light scattering method was used. The sensors were configured internally with semiconductor laser diodes for miniaturization, low cost and lightweight. The use of the FFT method makes it easier to separate fine dust according to size compared to conventional light scattering sensors. Bluetooth communication also allows the connection, monitoring and control of devices using smart phones.