• 제목/요약/키워드: scattering cross section

검색결과 156건 처리시간 0.027초

3차원 경계요소법을 이용한 무경계 산란장의 효율적 해석 (An Efficient Analysis of Unbounded Scattering Field Using Three Dimensional Boundary Element Method)

  • 박동희;김정기
    • 한국전자파학회지:전자파기술
    • /
    • 제5권3호
    • /
    • pp.14-21
    • /
    • 1994
  • 본 논문에서는 임의의 형태와 매질성분을 갖는 3차원 물체의 RCS(Radar Cross Section)를 구하기 위한 수 치켜 방법을 제시한다 RSC는 3차원 경계요소볍(3-DBEM)을 사용하여 다충산란체에 관한 표면적분방정식을 해석함으로서 구한다. 본 논문에서는 3차원적 경계요소법의 타당성과 유용성을 보이기 위하여 산란체의 형태를 비스듬한 입사전계로 부터 다충 정6변체 및 직6면체를 선택하였으며, 손실을 갖는 유전체 및 자성체의 경우에도충분히 적용될수 있도록 고찰하였다.

  • PDF

Coriolis Coupling Influence on the H+LiH Reaction

  • Zhai, Hongsheng;Li, Wenliang;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.151-157
    • /
    • 2014
  • We have reported the reaction probability, integral reaction cross section, and rate constant for the title system calculated with the aid of a time-dependent wave packet approach. The ab initio potential energy surface (PES) of Prudente et al. (Chem. Phys. Lett. 2009, 474, 18) is employed for the purpose. The calculations are carried out over the collision energy range of 0.05-1.4 eV for the two reaction channels of H + LiH ${\rightarrow}$ Li + $H_2$ and $H_b$ + $LiH_a$ ${\rightarrow}$ $LiH_b$ + $H_a$. The Coriolis coupling (CC) effect are taken into account. The importance of including the Coriolis coupling quantum scattering calculations are revealed by the comparison between the Coriolis coupling and the centrifugal sudden (CS) approximation calculations.

광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(I) - 화염온도의 영향 - (An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (I) - Effects of Flame Temperature -)

  • 조재걸;이정훈;김현우;최만수
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1139-1150
    • /
    • 1999
  • The evolution of silica aggregate particles in coflow diffusion flames has been studied experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Of particular interests are the effects of flame temperature on the evolution of silica aggregate particles. As the flow rate of $H_2$ increases, the primary particle diameters of silica aggregates have been first decreased, but, further increase of $H_2$ flow rate causes the diameter of primary particles to increase and for sufficiently larger flow rates, the fractal aggregates finally become spherical particles. The variation of primary particle size along the upward jet centerline and the effect of burner configuration have also been studied.

Scattering analysis of curved FSS using Floquet harmonics and asymptotic waveform evaluation technique

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Chun, Heoung-Jae;Park, Yong Bae;Kim, Youn-Jae;Yook, Jong-Gwan
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.561-572
    • /
    • 2014
  • In this paper, we present the scattering characteristics of infinite and finite array using method of moment (MoM) with Floquet harmonics and asymptotic waveform evaluation (AWE) technique. First, infinite cylindrical dipole array is analyzed using the MoM with entire domain basis function and cylindrical Floquet harmonics. To provide the validity of results, we fabricated the cylindrical dipole array and measured the transmission characteristics. The results show good agreements. Second, we analyzed the scattering characteristics of finite array. A large simulation time is needed to obtain the scattering characteristics of finite array over wide frequency range because Floquet harmonics can't be applied. So, we used the MoM with AWE technique using Taylor series and Pade approximation to overcome the shortcomings of conventional MoM. We calculated the radar cross section (RCS) as scattering characteristics using the proposed method in this paper and the conventional MoM for finite planar slot array, finite spherical slot array, and finite cylindrical dipole array, respectively. The compared results agree well and show that the proposed method in this paper is good for electromagnetic analysis of finite FSS.

석면 함유 천장재의 안정화제 희석에 따른 침투깊이 연구 (A Study of Penetration Depth into Ceiling Materials containing Asbestos according to Dilution Rate of Scattering Prevention Agent)

  • 신현규;최용규;전보람;하주연
    • 한국산업보건학회지
    • /
    • 제25권1호
    • /
    • pp.82-88
    • /
    • 2015
  • Objectives: This study is designed to analyze the penetration performance into ceiling materials containing asbestos of scattering prevention agents and investigate the change in penetration depth and viscosity according to the dilution rate of anti-scattering agents diluted with distilled water. Methods: Five different types of scattering prevention agents were spread on plate-type asbestos ceiling materials. The penetration depth of each coated ceiling material was measured by energy dispersive spectroscopy (EDS) analysis, based on X-ray fluorescence (XRF) results of the non-coated ceiling materials. Test equipment installed the ceiling materials and 60 minutes were collected at a flow rate of $10{\ell}/min$ at a filter of 25 mm. Results: An EDS analysis of the cross-section of ceiling materials constructed with a scattering prevention agent revealed that potassium is detected in the process of penetrating hardener solidification and this element could be an indicator for infiltration. When anti-scattering agents with different viscosities were constructed and the penetration depth was analyzed by potassium detection assessment using EDS, the depth results with viscosities of 5.0, 2.5, and 1.9 cP were 98.5, 103, and $147{\mu}m$, respectively. Penetration performance improved with decrease in viscosity. Conclusions: For asbestos ceiling materials, it is concluded that a higher dilution rate of the scattering prevention agent leads to lower viscosity, and hence a deeper penetration depth from $156{\mu}m$ to 3 mm. The asbestos anti-scattering properties according to the penetration depth will be confirmed through further study.

Development of a fast reactor multigroup cross section generation code EXUS-F capable of direct processing of evaluated nuclear data files

  • Lim, Changhyun;Joo, Han Gyu;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.340-355
    • /
    • 2018
  • The methods and performance of a fast reactor multigroup cross section (XS) generation code EXUS-F are described that is capable of directly processing Evaluated Nuclear Data File format nuclear data files. RECONR of NJOY is used to generate pointwise XS data, and Doppler broadening is incorporated by the Gauss-Hermite quadrature method. The self-shielding effect is incorporated in the ultrafine group XSs in the resolved and unresolved resonance ranges. Functions to generate scattering transfer matrices and fission spectrum matrices are realized. The extended transport approximation is used in zero-dimensional calculations, whereas the collision probability method and the method of characteristics are used for one-dimensional cylindrical geometry and two-dimensional hexagonal geometry problems, respectively. Verification calculations are performed first for various homogeneous mixtures and cylindrical problems. It is confirmed that the spectrum calculations and the corresponding multigroup XS generations are performed adequately in that the reactivity errors are less than 50 pcm with the McCARD Monte Carlo solutions. The nTRACER core calculations are performed with the EXUS-F-generated 47 group XSs for the two-dimensional Advanced Burner Reactor 1000 benchmark problem. The reactivity error of 160 pcm and the root mean square error of the pin powers of 0.7% indicate that EXUF-F generates properly the broad-group XSs.

패치산란모델을 이용한 실내 전파모델링에 관한 연구 (A Study on Indoor Propagation Modeling using Patch Scattering Model)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • 한국전자파학회논문지
    • /
    • 제12권5호
    • /
    • pp.772-772
    • /
    • 2001
  • 본 논문에서는 영상법 기반의 3차원 광선추적법에 패치산란모델을 이용하여 실내 구조물을 고려할 수 있는 실내 전파모델링 방법을 제시하였다. 실내 구조물을 모델링하기 위한 패치산란모델은 패치형태의 직사각형 평면에 대한 RCS를 이용하여 입사에 대한 산란현상을 정의한 것으로써, 책상이나 테이블 같은 평면적인 실내구조물에 대한 산란현상을 각각의 구조물에 대한 영상 안테나를 발생시키는 복잡한 과정 없이 간단하게 해석하기 위한 것이다. RCS는 간단히 입사 전력에 대한 산란 전력의 비로 정의되며 본 논문에서는 다양한 수신 각도에서 바라보는 bistatic RCS를 물리광학(Physical Optics)을 이용하여 수식적으로 유도하여 패치산란모델에 이용하였다. 또한 실내의 다중경로 성분에 대해 계산하지 않는 패치산란모델을 실내에 적용하기 위하여 복잡한 수식보다는 단순한 보정값인 실내보정값을 정의하였는데, 본 논문에서는 이 값을 다양한 패치 환경의 측정에 의한 경험적 상수로 처리함으로써 RCS의 고려만으로는 실내에 적용할 수 없는 점을 극복하였다.

패치산란모델을 이용한 실내 전파모델링에 관한 연구 (A Study on Indoor Propagation Modeling using Patch Scattering Model)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • 한국전자파학회논문지
    • /
    • 제12권5호
    • /
    • pp.722-733
    • /
    • 2001
  • 본 논문에서는 영상법 기반의 3차원 광선추적법에 패치산란모델을 이용하여 실내 구조물을 고려할 수 있는 실내 전파모델링 방법을 제시하였다. 실내 구조물을 모델링하기 위한 패치산란모델은 패치형태의 직사각형 평면에 대한 RCS를 이용하여 입사에 대한 산란현상을 정의한 것으로써, 책상이나 테이블 같은 평면적인 실내구조물에 대한 산란현상을 각각의 구조물에 대한 영상 안테나를 발생시키는 복잡한 과정 없이 간단하게 해석하기 위한 것이다. RCS는 간단히 입사 전력에 대한 산란 전력의 비로 정의되며 본 논문에서는 다양한 수신 각도에서 바라보는 bistatic RCS를 물리광학(Physical Optics)을 이용하여 수식적으로 유도하여 패치산란모델에 이용하였다. 또한 실내의 다중경로 성분에 대해 계산하지 않는 패치산란모델을 실내에 적용하기 위하여 복잡한 수식보다는 단순한 보정값인 실내보정값을 정의하였는데, 본 논문에서는 이 값을 다양한 패치 환경의 측정에 의한 경험적 상수로 처리함으로써 RCS의 고려만으로는 실내에 적용할 수 없는 점을 극복하였다.

  • PDF

전파경로 투적에 의한 비균질 유전체의 전자파 산란 (A ray-based approach to scattering from inhomogeneous dielectric objects)

  • Kim, Hyeongdong
    • 전자공학회논문지A
    • /
    • 제32A권2호
    • /
    • pp.31-37
    • /
    • 1995
  • A ray-based approach is developed to calculate the scattering from inhomogeneous dielectric objects. This approach is a natural extension of the "shooting and bouncing ray(SBR)" technique developed earlier for calculating the radar cross section of cavity structures and complex targets. In this formulation, a dense grid of rays representing the incident field is shot toward the scatterer. The curved trajectory, amplitude, phase and polarization of the ray fields inside the inhomogeneous object are computed numerically based on the laws of geometrical optics. The contributions of the exting rays to the exterior scattered field are then calculated by using the equivalence principle in conjunction with " a ray-tube integration" scheme. The ray-based approach is applied for the effect of an arcjet plasma plume on satellite reflector performance and backscattering from inhomogeneous objects.

  • PDF

Angular Effect of Virtual Vertices Inserted to Treat The Boundary Edges on an Infinite Conducting Surface

  • Hwang, Ji-Hwan;Kweon, Soon-Koo;Oh, Yisok
    • Journal of electromagnetic engineering and science
    • /
    • 제13권1호
    • /
    • pp.16-21
    • /
    • 2013
  • This study presents the angular effects of virtual vertices inserted for effective treatment of the boundary edge laid on an infinite conducting surface in a half-space scattering problem. We investigated the angular effects of virtual vertices by first computing the radar cross section (RCS) of a specific scatterer; i.e., a tilted conducting plate in contact with the ground surface, by inserting the virtual vertex in half-space. Here, the electric field integral equation is used to solve this problem with various virtual vertex angles (${\theta}_{\nu}$) and conducting plate inclination angles (${\theta}_r$) ranging from $0^{\circ}$ to $180^{\circ}$. The effects of the angles ${\theta}_{\nu}$ and ${\theta}_r$ on the RCS computation are clearly shown with numerical results with and without the virtual vertices in free- and half-spaces.