• Title/Summary/Keyword: scanning speed

Search Result 673, Processing Time 0.022 seconds

Effect of Nd:YVO4 Laser Beam Direction on Direct Patterning of Indium Tin Oxide Film

  • Ryu, Hyungseok;Lee, Dong Hyun;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.72-76
    • /
    • 2019
  • A Q-switched diode-pumped neodymium-doped yttrium vanadate (YVO4, λ =1064nm) laser was used for the direct patterning of indium tin oxide (ITO) films on glass substrate. During the laser direct patterning, the laser beam was incident on the two different directions of glass substrate and the laser ablated patterns were compared and analyzed. At a low scanning speed of laser beam, the larger laser etched lines were obtained by laser beam incident in reverse side of glass substrate. On the contrary, at a higher scanning speed, the larger etched pattern sizes were found in case of the beam incidence from front side of glass substrate. Furthermore, it was impossible to find no ablated patterns in some laser beam conditions for the laser beam from reverse side at a much higher scanning speed and repetition rate of laser beam. The laser beam is expected to be transferred and scattered through the glass substrate and the laser beam energy is thought to be also dispersed and much more influenced by the overlapping of each laser beam spot.

Vibration Characteristics and Performance of Cantilever for Non-contact Atomic Force Microscopy (비접촉 원자간력 현미경의 탐침 캔틸레버 진동 특성 및 측정 성능 평가)

  • 박준기;권현규;홍성욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.495-502
    • /
    • 2004
  • This paper presents the vibration analysis and the performance evaluation of cantilevers with probing tips for non-contact scanning probe microscopy. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made for the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

Performance Evaluation of Non-contact Atomic Force Microscopy Due to Vibration Characteristics of Cantilever (비접촉 원자간력 현미경의 탐침 외팔보 진동특성에 따른 성능 평가)

  • 박준기;권현규;홍성욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.263-268
    • /
    • 2003
  • This paper presents a result of performance evaluation fur non-contact scanning probe microscopy with respect to the vibration characteristics of cantilevers with tips. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made fur the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

  • PDF

Realization of a High Speed Optic Scanner for Infrared Thermal Imaging (적외선 체열촬영시스템을 위한 고속 광주사기의 구현)

  • 이수열
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 1995
  • A high speed optic scanner capable of 16 frames/sec imaging has been developed for the realization of the infrared thermal Imaging system with a single element infrared sensor. The high speed optic scanner is composed of a rotating polygon mirror for horizontal scanning, a flat mirror mounted on a galvanometer for vertical scanning, and a spherical mirror. It has been experimentally found that the optic scanner is capable of 16 framesllsec imaging with the frame matrix size of 256 x 64.

  • PDF

Study on Slice Sensitivity Profile and Reconstruction Resolution on Helical CT System (Helical CT 시스템에 있어 Slice Sensitivity Profile과 Reconstruction Resolution에 관한 연구)

  • Yoon, Han-Sik
    • Journal of radiological science and technology
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 1997
  • Unlike conventional CT scan, the helical CT scan uses continuous rotating CT equipment with a slip ring to move the patient's coach at a constant speed while continuously scanning. Slice sensitivity profiles in the Z-position(SSPz) using the conventional X-ray CT have a shape similiar to a rectangular wave, which slightly spreads out into plains below the mountain. However, in the helical CT, with an expansion of the base, the rectangular shape collapses and a mouatain-like shape can be seen. We need to investigate the fellowing factors in helical CT scanning;the ability to scan along the axis of the body, effective slice width, slice shape and the precision of coach velocity, Helical scanning with sprial X-ray track is different from the conventional scanning in terms of the principle of image reconstruction performed. We believe that the problems in helical scanning can be solved by understanding new the special parameters such as the bed moving speed and the interval of image reconstruction.

  • PDF

Complex Movements of Skipjack Schools Based on Sonar Observations during Pelagic Purse Seining

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.220-225
    • /
    • 2007
  • The movements of skipjack schools during purse seine operations were observed by scanning sonar in the Southwest Pacific Ocean in April 2004. Swimming speed and directional changes were analyzed in relation to heading of the purse seine during shooting, speed of the purse seiner and distance to the net. Escaped schools turned clockwise (relative to the heading of the purse seiner during shooting) significantly more frequently than captured schools, who primarily turned counter-clockwise. The swimming speed of a fish school, whether it was caught or escaped, was somewhat related to the ship's speed, but swimming speed did not differ between captured and escaped schools. The behavior of skipjack schools during purse seining consists of very complex movements with changes in swimming speed and direction in relation to the nets or purse seiner. Therefore, these responses of skipjack schools to purse seining can be useful for modeling the capture process of purse seining in relation to fishing conditions.

Laser-induced Thermochemical Wet Etching of Titanium for Fabrication of Microstructures (레이저 유도 열화학 습식에칭을 이용한 티타늄 미세구조물 제조)

  • 신용산;손승우;정성호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.32-38
    • /
    • 2004
  • Laser-induced thermochemical wet etching of titanium in phosphoric acid has been investigated to examine the feasibility of this method fur fabrication of microstructures. Cutting, drilling, and milling of titanium foil were carried out while examining the influence of process parameters on etch width, etch depth, and edge straightness. Laser power, scanning speed of workpiece, and etchant concentration were chosen as major process parameters influencing on temperature distribution and reaction rate. Etch width increased almost linearly with laser power showing little dependence on scanning speed while etch depth showed wide variation with both laser power and scanning speed. A well-defined etch profile with good surface quality was obtained at high concentration condition. Fabrication of a hole, micro cantilever beam, and rectangular slot with dimension of tess than 100${\mu}{\textrm}{m}$ has been demonstrated.

Laser Processing for Manufacturing Styrofoam Pattern (주물용 스티로폼 목형 제작을 위한 레이저 가공 공정 개발)

  • 강경호;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1085-1088
    • /
    • 2001
  • The process of styrofoam pattern that has been used for material of press die pattern depends chiefly on handwork. Laser manufacturing system developed to increase precision and efficiency of process that is also able to convert the design easily. Applying the RP(rapid prototyping) concept reversely, the unnecessary part of section is vapored away by heat source of laser beam after converting 3-D CAD model into cross-sectional shape information. Laser beam is line-scanned in plane specimens to measure the depth and width of cut, surface roughness, cross-sectional shape as converting laser power, scanning speed, cutting gas pressure. With these basic data, plane surface, inclined surface, hole, outer contour trimming process is experimented and optimum condition are obtained. In plane and inclined surface experiments, 15W laser power and 50mm/s scanning speed make superior processing property and 30W, 10mm/s make processing efficiency increase in trimming process. With these results, simple patterns were manufactured and the possibility of applying laser manufacturing system to styrofoam pattern was convinced.

  • PDF

CFRP Laser Joining Computer Simulation in a Parallel Kinematic Machine (병렬가공기계용 CFRP의 레이저 용접특성 시뮬레이션)

  • Lee, Seung-Taek;Park, Seung-Gyu;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-82
    • /
    • 2017
  • A computer simulation method is introduced to understand the joining phenomena of PC and CFRP by estimating the temperature of the weld zone. Following the prior or preliminary research, the power range was set between 3 watts and 7 watts, and the scanning speed was set at 500 mm/min and 1,000 mm/min, respectively. Based on the computer simulation, the temperature near the joining boundary was not sufficient at the scanning speed of 1,000 mm/min, regardless of the selected powers. However, the temperature increases above the melting temperature of the selected polymers at the scanning speed of 500 mm/min. The simulation results were compared with actual weld samples to validate its actual use.

Effect of Laser Scanning Speed on the Laser Direct Patterning of T-shaped Indium Tin Oxide (ITO) Electrode for High Luminous AC Plasma Display Panels (고효율 플라즈마 디스플레이 패널을 위한 T-형 ITO 전극의 레이저 직접 패터닝시 레이저 스캔 속도의 영향)

  • Li, Zhao-Hui;Cho, Eou-Sik;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.133-136
    • /
    • 2010
  • Laser direct patterning is one of new methods which are able to replace a conventional photolithography. In order reduce the fabrication cost and to improve the luminous efficiency of AC plasma display panels (PDPs), in this experiment, a Q-switched Nd:$YVO_4$ laser was used to fabricate T-shaped indium tin oxide (ITO) display electrodes. For the laser beam scanning speed from 100 mm/sec to 800 mm/sec, T-shaped ITO patterns were clearly obtained and investigated. The experimental results showed that the optimized T-shaped ITO electrode was obtained when the lasers scanning speed was 300 mm/s.