• Title/Summary/Keyword: scanning microscopy

Search Result 5,709, Processing Time 0.034 seconds

플라즈마 분자선 에피택시에 의해 성장 멈춤법으로 증착된 완충층에 성장된 ZnO 박막의 특성 변화

  • Im, Gwang-Guk;Kim, Min-Su;Kim, So-ARam;Nam, Gi-Ung;Park, Dae-Hong;Cheon, Min-Jong;Lee, Dong-Yul;Kim, Jin-Su;Kim, Jong-Su;Lee, Ju-In;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.83-83
    • /
    • 2011
  • 본 연구에서는 p-type Si (100) 위에 분자선 에피택시 성장방법으로 ZnO 완충층이 삽입된 ZnO 박막을 성장시켰다. ZnO 완충층은 Zn 셀 셔터의 열림/닫힘을 반복하는 성장 멈춤법으로 성장되었다. Zn 셀 셔터의 열림 시간은 4분, 2분, 1분이며 닫힘 시간은 2분으로 동일하게 유지하였다. 이러한 과정은 각각 5, 10, 20회로 반복되었으며 ZnO 완충층을 성장한 후 ZnO 박막은 기존의 분자선 에피택시 방법으로 성장되었다. ZnO 박막의 구조적, 광학적 특성은 field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL)로 조사하였다. SEM 측정결과 성장 멈춤 횟수가 증가함에 따라 ZnO 박막의 표면은 섬(island) 구조에서 미로(maze) 구조로 변화하였고, XRD 측정결과 full-width at half-maximum (FWHM) 이 감소하고 결정립 크기(grain size)가 증가하였다. 그리고 PL 측정결과 성장 멈춤 횟수가 증가함에 따라 near-band-edge emission (NBE) 피크의 세기가 증가하였고 deep-level emission (DLE) 피크의 위치는 오렌지 발광에서 녹색 발광으로 청색편이(blue-shift)하였다.

  • PDF

Ferroelectricity of Bi-doped ZnO Films Probed by Scanning Probe Microscopy

  • Ben, Chu Van;Lee, Ju-Won;Kim, Jung-Hoon;Yang, Woo-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.323-323
    • /
    • 2012
  • We present ferroelectricity of Bi-doped ZnO film probed by piezoresponse force microscopy (PFM), which is one of the Scanning Probe Microscopy techniques. Perovskite ferroelectrics are limited to integration of devices into semiconductor microcircuitry due to hard adjusting their lattice structure to the semiconductor materials. Transition metal doped ZnO film is one of the candidate materials for replacing the perovskite ferroelectrics. In this study, ferroelectric characteristics of the Bi-doped ZnO grown by pulsed laser deposition were probed by PFM. The polarization switching and patterning of the ZnO films were performed by applying DC bias voltage between the AFM tips and the films with varying voltages and polarity. The PFM contrast before and after patterning showed clearly polarization switching for a specific concentration of Bi atoms. In addition, the patterned regions with nanoscale show clearly the local piezoresponse hysteresis loop. The spontaneous polarization of the ZnO film is estimated from the local piezoresponse based on the comparison with LiNbO3 single crystals.

  • PDF

Ultrastructure of Capillaria hepatica (Syn. Calodium hepatica) Isolated from the Liver of Mouse Infected with Artificially Embryonated Eggs Collected from House Rats (Rattus norvegicus)

  • Min, Byoung-Hoon;Lee, Haeng-Sook;Kim, Soo-Jin;Joo, Kyoung-Hwan
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.146-154
    • /
    • 2013
  • Capillaria hepatica (syn. Calodium hepatica) is a parasite found mainly in rodent liver. But, it has also been found in a wide variety of mammals, including humans. This worm is unique as it is the only nematode parasite that is embedded in the liver parenchyma of the host even during the adult stage of the life cycle. They produce eggs that elicit a marked granulomatous reaction that eventually destroys the worms. Fibrosis and lymphoplasmacytic inflammatory infiltration are often observed around adult nematodes embedded in the liver parenchyma of the host. For this reason, complete isolation of this slender worm and observation of the intact ultrastructure is very difficult. In this study, 10 intact whole worms (C. hepatica) were isolated from the liver of 3-week-old mouse after inoculation of artificially embryonated eggs collected from house rats (Rattus norvegicus). Their external structure of was observed with light and scanning electron microscopy. The length of the isolated female and male C. hepatica was approximately 69.60 mm and 36.92 mm, respectively. More detailed ultrastructure, including bacillary band, eggs and vulva in female and spicule and spicule sheath in male C. hepatica was also described.

Comparison of Cell Wall Ultrastructures of Aspergillus nidulans in Presence and Absence of a MnpAp Mannoprotein

  • Jeong, Hyo-Yong;Whang, Sung-Soo;Chae, Keon-Sang
    • Animal cells and systems
    • /
    • v.10 no.3
    • /
    • pp.131-135
    • /
    • 2006
  • The ultrastructure of Aspergillus nidulans cell wall in relation to a mannoprotein was studied by scanning and transmission electron microscopy. An mnpAp null-mutant, DMPV1, was used as a negative control of a wild type VER7. To analyze whether the mannoprotein in the cell wall during the development of an mnpAp null-mutant is present or not, immunogold microscopy was also adopted. The surface sculpturing of various cell types - hyphae, conidium, Hulle cell, and ascospore - were not very different between the wild type and the mnpAp-null mutant (DMPV1) as examined by scanning electron microscopy. These results were comparable to those examined by transmission electron microscopy, in that the hyphal cell wall was not indentical between two strains, probably caused by the MnpA protein (MnpAp). MnpAp was absent in both the hyphal cell wall of the DMPV1 strain and the conidial cell wall of a wide type, but clearly recognized in the hyphal cell wall of a wild type.

Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers (전기방사법을 이용한 폴리(비닐 알코올)/수분산 폴리우레탄/몬모릴로나이트 나노복합섬유의 제조 및 특성분석)

  • Kim, In-Kyo;Yeum, Jeong-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.553-557
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA)/waterborne polyurethane (WBPU)/montmorillonite clay (MMT) nanocomposite nanofibers were prepared using electrospinning technique of aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and thermal gravimetric analyzer were used to characterize the morphology and properties of the nanocomposite nanofibers. Since PVA, WBPU and MMT are hydrophilic, non-toxic and biocompatible materials, these nanocomposite nanofibers can be used for filter and medical industries as wound dressing materials, antimicrobial filters, etc.

Signal increasing method in confocal scanning microscopy in fluorescence mode using curved mirror

  • Kang, Dong-kyun;Seo, Jung-woo;Gweon, Dae-gab
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.99.3-99
    • /
    • 2001
  • In fluorescence mode confocal scanning microscope, level of detected signal is very low. In object scanning type confocal scanning microscope, the additional optical system with objective lens and plane mirror was proposed to increase signal intensity, but there was none for beam scanning type confocal scanning microscope. We propose reflecting optical systems which improve signal intensity in beam scanning type confocal scanning microscope. We choose one of the proposed optical systems and design the optical system, i.e., select optical components and assign distances between the selected components. To design the optical system, we use finite ray tracing method and make cost function to be minimized.

  • PDF

Nanomanipulation and Nanomanufacturing based on Ion Trapping and Scanning Probe Microscopy (SPM)

  • Kim, Dong-Whan;Tae, Won-Si;Yeong, Maeng-Hui;K. L. Ekinci
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.530-537
    • /
    • 2004
  • Development of a versatile nanomanipulation tool is an overarching theme in nanotechnology. Such a tool will likely revolutionize the field given that it will enable fabrication and operation of a wealth of interesting nanodevices. This study seeks funding to create a novel nanomanipulation system with the ultimate goal of using this system for nanomanufacturing at the molecular level. The proposed design differs from existing approaches. It is based on a nanoscale ion trap integrated to a scanning prove microscope (SPM) tip. In this design, molecules to be assembled will be ionized and collected in the nanoscale ion trap all in an ultra high vacuum (UHV) environment. Once filled with the molecular ions, the nanoscale ion trap-SPM tip will be moved on a substrate surface using scanning probe microscopy techniques. The molecular ions will be placed at their precise locations on the surface. By virtue of the SPM, the devices that are being nanomanufactured will be imaged in real time as the molecular assembly process is carried out. In the later stages, automation of arrays of these nanomanipulators will be developed.

  • PDF

Scanning Electron Microscopic Observation of Human Skin Replica

  • Rhyu, Yeon-Seung;Chung, Ye-Ji;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.40 no.4
    • /
    • pp.267-270
    • /
    • 2010
  • The skin is the largest organ of the integument system whose surface is closely related with many physiological and pathological conditions. Various methods are used to understand the structural and functional status of human skin. We would like to present usefulness of scanning electron microscopic (SEM) observation of skin replica and its significance of training module for a novice. The silicon replicas from several regions of the body (hand, finger, forearm, lip, and face) were casted by applying Exafine$^{(R)}$ mixture. The positive replicas were prepared by applying EPON 812 mixture on negative silicon replicas. Some of the negative silicon replicas were cut with a razor blade and surface profiles were observed. The negative and positive replicas were coated with platinum and were observed under the scanning electron microscope. We could investigate the detailed structures of the human skin surface without any physical damage to the subject. The positive replicas depicted real surface structure of the human skin vividly. The cross sectional view of the negative silicon replicas provided surface profile clearly. The scanning electron microscopic observation of the human skin replicas would be useful to study skin surface structures and to evaluate medical and esthetical applications.

An Optimized Methodology to Observe Internal Microstructures of Aloe vera by Cryo-Scanning Electron Microscope

  • Choi, Yoon Mi;Shin, Da Hye;Kim, Chong-Hyeak
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.76-82
    • /
    • 2016
  • Aloe vera has been used in the pharmaceutical, food and cosmetic industry for its therapeutic properties. However, there are not many current studies on the microstructure of A. vera compared to studies on the chemical constituents and health efficacy of A. vera. Therefore, we compared the morphology of an A. vera leaf using an optical microscope, a conventional scanning electron microscope (SEM) and a cryo-SEM. Especially, this study focused on observing the gel in the inner leaf of A. vera, which is challenging using standard imaging techniques. We found that cryo-SEM is most suitable method for the observation of highly hydrated biomaterials such as A. vera without removing moisture in samples. In addition, we found the optimal analytical conditions of cryo-SEM. The sublimation conditions of $-100^{\circ}C$ and 10 minutes possibly enable the surface of the inner leaf of A. vera to be observed in their "near life-like" state with retaining moisture. The experiment was repeated with A. arborescens and A. saponaria to confirm the feasibility of the conditions. The results of this study can be applied towards the basic research of aloe and further extend previous knowledge about the surface structures of the various succulent plants.

Superconductivity on Nb/Si(111) System : scanning tunneling microscopy and spectroscopy study

  • Jeon, Sang-Jun;Suh, Hwan-Soo;Kim, Sung-Min;Kuk, Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.390-390
    • /
    • 2010
  • Superconducting proximity effects of Nb/Si(111) were investigated with scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). A highly-doped($0.002\;{\omega}{\diamondsuit}cm$) Si wafer pieces were used as substrate and Nb source was thermally evaporated onto the atomically clean silicon substrate. The temperature of the silicon sample was held at $600^{\circ}C$ during the niobium deposition. And the sample was annealed at $600^{\circ}C$ for 30 minutes additionally. Volmer-Weber growth mode is preferred in Nb/Si(111) at the sample temperature of $600^{\circ}C$. With proper temperature and annealing time, we can obtain Nb islands of lateral size larger than Nb coherence length(~38nm). And outside of the islands, bare Si($7{\times}7$) reconstructed surface is exposed due to the Volmer-Weber Growth mode. STS measurement at 5.6K showed that Nb island have BCS-like superconducting gap of about 2mV around the Fermi level and the critical temperature is calculated to be as low as 6.1K, which is lower than that of bulk niobium, 9.5K. This reduced value of superconducting energy gap indicates suppression of superconductivity in nanostructures. Moreover, the superconducting state is extended out of the Nb island, over to bare Si surface, due to the superconducting proximity effect. Spatially-resolved scanning tunneling spectroscopy(SR-STS) data taken over the inside and outside of the niobium island shows gradually reduced superconducting gap.

  • PDF