• 제목/요약/키워드: scanning control

검색결과 1,323건 처리시간 0.033초

망막의 3차원 실시간 영상화를 위한 고속 동기제어 시스템 개발 (Development of High Speed Synchronous Control System for Real Time 3D Eye Imaging Equipment)

  • 고종선;김영일;이용재;이태훈
    • 전력전자학회논문지
    • /
    • 제8권1호
    • /
    • pp.17-23
    • /
    • 2003
  • 컴퓨터 모니터를 통해 안구망막의 형태와 두께를 보기 위해서 레이저의 경로차를 이용하는 SLO 장비가 사용되고 있다. 이러한 방법으로 망막의 선명한 3차원 영상을 보기 위해서는 레이저 광경로 시스템의 정확한 동기제어가 필요하다. 이 영상을 얻기 위해서는 평면주사를 하는데 있어서 정밀동기제어가 매우 중요하다. 본 논문에서는 안구의 3차원 영상을 만들기 위해 갈바노미터의 동기제어를 구현한다. 또한 갈바노미터의 간략한 수학적 모델의 타당성을 보인다.

마이크로프로세서 기반 인터럽트 제어방법에 의한 키보드 스캔 알고리즘에 관한 실험적 연구 (Experimental Study on the Keyboard Scanned Algorithm by a Microprocessor-Based Interrupt Control Method)

  • 이영욱
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2010년도 춘계 종합학술대회 논문집
    • /
    • pp.272-273
    • /
    • 2010
  • 마이크로프로세서 시스템의 키보드 버튼의 누름 결과를 기존의 입력 스캔 제어방법이 아닌 인터럽트 제어방법으로 시도하였다. 키보드 스캔 결과를 인터럽트 제어 방법으로 제어 시 적절한 30ms의 주기로 인식하도록 함으로써 마이크로프로세서의 작업부하를 줄이는 키보드 버튼 누름 제어 인식 알고리즘을 제시하였다.

  • PDF

Bimorph PZT를 이용한 고밀도 광학헤드의 정밀위치 및 간극제어 (Precision Position and Gap Control for High Density Optical Head Using Bimorph PZT)

  • 권영기;홍어진;박태욱;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.888-893
    • /
    • 2004
  • This paper proposed a dual actuator using bimorph PZT for information storage device based on prove array NSOM(Near-field Scanning Optical Microscopy). The gap between the media and the optical head should be maintained within the optical tolerance. Therefore, a new actuator having high sensitivity is required. Bimorph PZT, which has fast access time and high sensitivity characteristic, is suitable for this precise actuating system. This paper is focused on derivation of mathematical model of dual bimorph PZT actuator and control algorithm. Hamilton's principle was used for mathematical model. The model is verified by FEA(Finite Element Analysis), and compared with experimental results. Different control algorithms were used f3r two bimorph PZT actuating same direction and opposite direction. The gap between recording media and optical head was controlled within 20nm in experiment.

  • PDF

System dynamics of scanning tunneling microscope unit

  • Yamada, Hikaru;Endo, Toshiro;Tsunetaka-Sumomogi;Fujita, Toshizo;Morita, Seizo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.794-797
    • /
    • 1988
  • G. Binnig and H. Rohrer introduced the Scanning Tunneling Microscope (STM) in 1982 and developed it into a powerful and not to be missed physical tool. Scanning tunneling Microscopy is a real space surface imaging method with the atomic or subatomic resolution in all three dimensions. The tip is scanned over the surface by two piezo translators mounted parallel (X-piezo and Y-piezo) to the surface and perpendicular to each other. The voltage applied to the third piezo (Z-piezo) translator mounted perpendicular to the surface to maintain the tunneling current through the gap at a constant level reflects then the topography of the surface. The feed back control loop for the constant gap current is designed using the automatic control technique. In the designing process of the feed back loop, the identification of the gap dynamics is very complex and has difficulty. In this research, using some suitable test signals, the system dynamics of the gap including the Z-piezo are investigated. Especially, in this paper, a system model is proposed for the gap and Z-piezo series system. Indicial response is used to find out the model. The driving voltage of the Z-piezo and the tunneling current are considered as input and output signals respectively.

  • PDF

파장 주사 간섭계를 이용한 불연속면의 표면 형상 측정 알고리즘 (An Algorithm for Discontinuous Surface Profile Measurement using Wavelength Scanning Interferometer)

  • 우현구;강철무;조형석
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.507-514
    • /
    • 2003
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. Recently the shape measurement using interferometric principle is found to be a successful methodology among other visual or optical technologies. Especially, the measuring method using wavelength scanning interferometer(WSI) has a great advantage in comparison with other conventional jnterferometric methods in that the absolute distance from the reference surface can be directly obtained from the amount of jnterferometric phase change. However, the measurement methods using WSI proposed by other researchers have low measurement resolution so far because they can't measure fractional phase change. To avoid this shortcoming we propose a new algorithm in this paper, which can obtain a small amount of even fractional phase change by sinusoidal function fitting. To evaluate the effectiveness of the proposed sinusoidal function fitting algorithm, a series of measuring experiments are conducted for discontinuously shaped specimens which have various height. The proposed algorithm shows much more enhanced measurement resolution than other existing conventional algorithms such as zero crossing algorithm and Fourier transform algorithm.

Robust Controls of a Galvanometer : A Feasibility Study

  • Park, Myoung-Soo;Kim, Young-Chol;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권2호
    • /
    • pp.94-98
    • /
    • 1999
  • Optical scanning systems use glavanometers to point the laser beam to the desired position on the workpiece. The angular speed of a galvanometer is typically controlled using Proportional+Integral+Derivative(PID) control algorithms. However, natural variations in the dynamics of different galvanometers due to manufacturing, aging, and environmental factors(i.e., process uncertainty) impose a hard limit on the bandwidth of the galvanometer control system. In general, the control bandwidth translates directly into efficiency of the system response. Since the optical scanning system must have rapid response, the higher control bandwidth is required. Auto-tuning PID algorithms have been accepted in this area since they could overcome some of the problems related to process uncertainty. However, when the galvanometer is attached to a larger mechanical system, the combined dynamics often exhibit resonances. It is well understood that PId algorithms may not have the capacity to increase the control bandwidth in the face of such resonances. This paper compares the achieable performance and robustness of a galvanometer control system using a PID controller tuned by the Ziegler-Nichols method and a controller designed by the Quantitative Feedback Theory(QFT) method. The results clearly indicate that-in contrast to PID designs-QFT can deliver a single, fixed controller which will supply high bandwidth design even when the dynamics is uncertain and includes mechanical resonances.

  • PDF

Multiple crack evaluation on concrete using a line laser thermography scanning system

  • Jang, Keunyoung;An, Yun-Kyu
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.201-207
    • /
    • 2018
  • This paper proposes a line laser thermography scanning (LLTS) system for multiple crack evaluation on a concrete structure, as the core technology for unmanned aerial vehicle-mounted crack inspection. The LLTS system consists of a line shape continuous-wave laser source, an infrared (IR) camera, a control computer and a scanning jig. The line laser generates thermal waves on a target concrete structure, and the IR camera simultaneously measures the corresponding thermal responses. By spatially scanning the LLTS system along a target concrete structure, multiple cracks even in a large scale concrete structure can be effectively visualized and evaluated. Since raw IR data obtained by scanning the LLTS system, however, includes timely- and spatially-varying IR images due to the limited field of view (FOV) of the LLTS system, a novel time-spatial-integrated (TSI) coordinate transform algorithm is developed for precise crack evaluation in a static condition. The proposed system has the following technical advantages: (1) the thermal wave propagation is effectively induced on a concrete structure with low thermal conductivity of approximately 0.8 W/m K; (2) the limited FOV issues can be solved by the TSI coordinate transform; and (3) multiple cracks are able to be visualized and evaluated by normalizing the responses based on phase mapping and spatial derivative processes. The proposed LLTS system is experimentally validated using a concrete specimen with various cracks. The experimental results reveal that the LLTS system successfully visualizes and evaluates multiple cracks without false alarms.

3D스캐닝을 이용한 건설공사 스마트 품질점검 방안에 관한 연구 (Smart Quality Inspection Scheme for Construction Project Using 3D Scanning Technology)

  • 이돈수;김광희
    • 한국건축시공학회지
    • /
    • 제20권2호
    • /
    • pp.191-198
    • /
    • 2020
  • 건설산업에도 스마트 건설기술들이 많이 도입되고 있으며, 여러 기술 중 3D 스캐닝과 BIM을 이용한 품질관리를 시도하는 회사가 증가하고 있다. 따라서 본 연구에서 3D 스캐닝과 BIM을 현장 품질점검 사례에 적용하여 활용가능성과 효용성을 확인하였다. 그 결과 3D 스캐닝과 BIM을 활용한 품질점검은 기존에 시행했던 품질점검보다 시간적으로 단축되고 적은 인력으로도 실현이 가능하다는 것을 확인하였다. 따라서 품질점검의 다양한 분야에 3D 스캐닝과 BIM을 활용한 기술을 적용할 수 있을 것으로 사료된다.