• Title/Summary/Keyword: scanning capacitance microscopy

Search Result 74, Processing Time 0.022 seconds

Crystal Structure and Dielectric Responses of Pulsed Laser Deposited (Ba, Sr)$TiO_3$ Thin Films with Perovskite $LaNiO_3$ Metallic Oxide Electrode

  • Lee, Su-Jae;Kang, Kwang-Yong;Jung, Sang-Don;Kim, Jin-Woo;Han, Seok-Kil
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.258-261
    • /
    • 2000
  • Highly (h00)-oriented (Ba, Sr)TiO$_3$(BST) thin films were grown by pulsed laser deposition on the perovskite LaNiO$_3$(LNO) metallic oxide layer as a bottom electrode. The LNO films were deposited on SiO$_2$/Si substrates by rf-magnetron sputtering method. The crystalline phases of the BST film were characterized by x-ray $\theta$-2$\theta$, $\omega$-rocking curve and $\psi$-scan diffraction measurements. The surface microsturcture observed by scanning electron microscopy was very dense and smooth. The low-frequency dielectric responses of the BST films grown at various substrate temperatures were measured as a function of frequency in the frequency range from 0.1 Hz to 10 MHz. The BST films have the dielectric constant of 265 at 1 kHz and showed multiple dielectric relaxation at the low frequency region. The origin of these low-frequency dielectric relaxation are attributed to the ionized space charge carriers such as the oxygen vacancies and defects in BST film, the interfacial polarization in the grain boundary region and the electrode polarization. We studied also on the capacitance-voltage characteristics of BST films.

  • PDF

Characteristics and Processing Effects Of $HfO_2$ Thin Films grown by Metal-Organic Molecular Beam Epitaxy (금속 유기 분자 빔 에피택시로 성장시킨 $HfO_2$ 박막의 특성과 공정변수가 박막의 성장 및 특성에 미치는 영향)

  • Kim, Myoung-Seok;Ko, Young-Don;Nam, Tae-Hyoung;Jeong, Min-Chang;Myoung, Jae-Min;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.74-77
    • /
    • 2004
  • [ $HfO_2$ ] dielectric layers were grown on the p-type Si(100) substrate by metalorganic molecular beam epitaxy(MOMBE). Hafnium $t-butoxide[Hf(O{\cdot}t-C_4H_9)_4]$ was used as a Hf precursor and Argon gas was used as a carrier gas. The thickness of the layers was measured by scanning electron microscopy (SEM) and high-resolution transmission electron measurement(HR-TEM). The properties of the $HfO_2$ layers were evaluated by X-ray diffraction(XRD), high frequency capacitance-voltage measurement(HF C-V), current-voltage measurement(I-V), and atomic force measurement(AFM). HF C-V measurements have shown that $HfO_2$ layer grown by MOMBE has a high dielectric constant(k=19-21). The properties of $HfO_2$ films are affected by various process variables such as substrate temperature, bubbler temperature, Ar, and $O_2$ gas flows. In this paper, we examined the relationship between the $O_2/Ar$ gas ratio and the electrical properties of $HfO_2$.

  • PDF

Electrochemical Behaviors of Carbon Aerogel Electrodes for Electric Double Layer Capacitors (전기이중층 커패시터용 탄소 에어로겔 전극의 전기화학적 거동 연구)

  • Yang, Jae-Yeon;Seo, Min-Kang;Kim, Byoung-Suhk
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.336-340
    • /
    • 2020
  • In this study, carbon aerogels (CA) were prepared by sol-gel polycondensation of resorcinol and furfural in isopropanol using hexamethylenetetramine as a catalyst, and then directly drying the organic gels under isopropanol freeze-drying conditions, followed by carbonization under a nitrogen atmosphere. The preparation conditions of the CA were explored by changing the mole ratio of resorcinol to furfural. The effect of the preparation conditions on the pore structure of the CA was studied by nitrogen adsorption isotherms. The characteristics of the CA were studied by scanning and transition electron microscopy, and infrared spectrometry. The accessibility of pores and performance of the CA as an electrode in electric double layer capacitors were also electrochemically investigated. As a result, BET surface area and specific capacitance increased with the molar ratio of resorcinol to catalyst (R/C) ratio; the maximum values of 765 ㎡/g and 132 F/g were achieved at the R/C ratio of 200, respectively. Consequently, it was confirmed that increasing the R/C ratio increased the average pore size of the CA electrode, which improved the rate capability of the system.

Fabrication and characterization of hybrid AlTiSrO/rGO thin films for liquid crystal orientation (액정 배향용 하이브리드 AlTiSrO/rGO 박막 제조 및 특성 평가)

  • Byeong-Yun Oh
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.155-165
    • /
    • 2024
  • A hybrid thin film was prepared by doping reduced graphene oxide (rGO) into a sol-gel solution mixed with aluminum, titanium, and strontium using a brush coating method. The annealing temperature was carried out at 160, 260, and 360℃, and the difference in oxidation reaction was observed. The sol-gel solution created during the membrane manufacturing process generates a contractile force due to the shear stress of the brush bristles, forming a microgroove structure. This structure was confirmed through scanning electron microscopy analysis, and the presence of rGO was clearly revealed. As the annealing temperature increases, the oxidation and reduction reactions on the thin film surface become more active, so the intensity of the surface mixture increases. Moreover, the electro-optical properties were stabilized and improved by increasing the intensity of the mixtures. Likewise, the voltage-capacitance values are also significantly improved. Lastly, the transmittance measurement showed that it was suitable for liquid crystal display application.

Characterization of manganese oxide supercapacitors using carbon cloth (Carbon Cloth을 이용한 이산화망간 슈퍼커패시터 특성 연구)

  • Lee, Seung Jin;Kim, Chihoon;Ji, Taeksoo
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1199-1205
    • /
    • 2017
  • Global energy consumption is rapidly increasing yearly due to drastic industrial advances, requiring the development of new energy storage devices. For this reason, supercapacitors with fast charge-discharge, long life cycle and high power density is getting attention, and have been considered as one of the potential energy storage systems. In this research, we developed a supercapacitor that consists of amorphous manganese oxide($MnO_2$) electrodes deposited onto carbon cloth substrates using the hydrothermal method. The Fe-doped amorphous $MnO_2$ samples were characterized by X-ray diffraction(XRD), Energy Dispersive X-ray spectroscopy(EDX), as well as scanning electron microscopy(SEM). The electrochemical analysis of the prepared samples were performed using cyclic voltammetry and galvanostatic charge-discharge measurements in 1M $Na_2SO_4$ electrolyte. The test results demonstrate that the supercapacitor based on the Fe-doped amorphous $MnO_2$ electrodes has a specific capacitance as high as 163F/g at 1A/g current density, and good cycling stability of 87.34% capacitance retention up to 1000 cycles.

Synthesis of MnO2 Nanowires by Hydrothermal Method and their Electrochemical Characteristics (수열합성법을 이용한 망간 나노와이어 제조 및 이의 전기화학적 특성 연구)

  • Hong, Seok Bok;Kang, On Yu;Hwang, Sung Yeon;Heo, Young Min;Kim, Jung Won;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.653-658
    • /
    • 2016
  • In this work, we developed a synthetic method for preparing one-dimensional $MnO_2$ nanowires through a hydrothermal method using a mixture of $KMnO_4$ and $MnSO_4$ precursors. As-prepared $MnO_2$ nanowires had a high surface area and porous structure, which are beneficial to the fast electron and ion transfer during electrochemical reaction. The microstructure and chemical structure of $MnO_2$ nanowires were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller measurements. The electrochemical properties of $MnO_2$ nanowire electrodes were also investigated using cyclic voltammetry and galvanostatic charge-discharge with a three-electrode system. $MnO_2$ nanowire electrodes showed a high specific capacitance of 129 F/g, a high rate capability of 61% retention, and an excellent cycle life of 100% during 1000 cycles.

Effect of Temperature on Growth of Tin Oxide Nanostructures (산화주석 나노구조물의 성장에서 기판 온도의 효과)

  • Kim, Mee-Ree;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.497-502
    • /
    • 2019
  • Metal oxide nanostructures are promising materials for advanced applications, such as high sensitive gas sensors, and high capacitance lithium-ion batteries. In this study, tin oxide (SnO) nanostructures were grown on a Si wafer substrate using a two-zone horizontal furnace system for a various substrate temperatures. The raw material of tin dioxide ($SnO_2$) powder was vaporized at $1070^{\circ}C$ in an alumina crucible. High purity Ar gas, as a carrier gas, was flown with a flow rate of 1000 standard cubic centimeters per minute. The SnO nanostructures were grown on a Si substrate at $350{\sim}450^{\circ}C$ under 545 Pa for 30 minutes. The surface morphology of the as-grown SnO nanostructures on Si substrate was characterized by field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Raman spectroscopy was used to confirm the phase of the as-grown SnO nanostructures. As the results, the as-grown tin oxide nanostructures exhibited a pure tin monoxide phase. As the substrate temperature was increased from $350^{\circ}C$ to $424^{\circ}C$, the thickness and grain size of the SnO nanostructures were increased. The SnO nanostructures grown at $450^{\circ}C$ exhibited complex polycrystalline structures, whereas the SnO nanostructures grown at $350^{\circ}C$ to $424^{\circ}C$ exhibited simple grain structures parallel to the substrate.

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.

Electrical Properties of SrBi$_2$$Nb_2$>$O_9$ Thin Films deposited by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링법에 의해 증착된 SrBi$_2$$Nb_2$>$O_9$ 박막의 전기적 특성에 관한 연구)

  • Zhao, Jin-Shi;Choi, Hoon-Sang;Lee, Kwan;Choi, In-Hoon
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.290-293
    • /
    • 2001
  • The SrBi$_2$Nb$_2$O$_{9}$ (SBN) thin films were deposited on p-type(100) Si substrates by rf magnetron sputtering to confirm the Possibility of Pt/SBN/Si structure for the application of nondestructive read out ferroelectric random access memory (NDRO- FRAM). The SBN thin films were deposited by co-sputtering method with Sr$_2$Nb$_2$O$_{7}$ (SNO) and Bi$_2$O$_3$ ceramic targets. The SBN thin films deposited at room temperature were annealed at $700^{\circ}C$ for 1hr in $O_2$ ambient. The structural and electrical properties of SBN with different power ratios of targets were measured by x-ray diffraction(XRD), scanning electron microscopy(SEM), capacitance-voltage(C-V), and current-voltage(I-V). The C-V curves of the SBN films showed hysteresis curves of a clockwise rotation showing ferroelectricity. When the Power ratio of the SNO/Bi$_2$O$_3$ targets was 120 W/100 W, the SBN thin films had excellent electrical properties. The memory window of SBN thin film was 1.8 V-6.3 V at applied voltage of 3 V-9 V and the leakage current density was 1.5 $\times$ 10$^{-7}$ A/$\textrm{cm}^2$ at applied voltage of 5 V The composition of SBN thin films was analysed by electron probe X-ray micro analyzer(EPMA) and the atomic ratio of Sr:Bi:Nb with pawer ratio of 120 W/100 W was 1:3:2.

  • PDF

Study of Low-K Si-O-C-H Thin Films (Si-O-C-H 저유전율 박막의 특성 연구)

  • 김윤해;이석규;김형준
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.106-106
    • /
    • 1999
  • 반도체 소자가 소브마이크론 이하로 집적화 되어감에 따라, RC 신호 지연 및 간섭 현상, 전력 소비의 증가 문제가 심각하게 대두되고 있다. 이러한 문제를 개선하기 위해서는, 현재 층간 절연막으로 상용화되어 있는 SiO2 박막을 대체할 저유전율 박막의 개발이 필수적이며, 많은 연구자들이 여러 가지 새로운 유기물질과 무기물질은 제안하고 있다. 반도체 공정상의 적합성을 고려할 때, 이들 여러물질 중에서 알킬기를 함유한 SiO2 박막(이하 'Si-O-C-H 박막'으로 표기)에 많은 관심이 집중되고 있다. Si-O-C-H 박막은 알킬기에 의해 형성된 나노 스케일의 기공에 의해 작은 유전율을 가지게 된다. 따라서, 박막내의 알킬기의 함유량이 많을수록 보다 작은 유전율을 얻을 수 있다. 그러나 과다한 알킬기의 함유는 Si-O-C-H 박막의 열적 특성을 열화시키는 부정적인 효과도 있다. 본 연구에서는 bis-trimethylsilylmethane(BTMSM, H9C3-Si-CH2-Si-C3H9) precursor를 이용하여 Si-O-C-H 박막을 증착하였다. BTMSM precursor의 중요한 특징중 하나는, 두 실리콘 원자 사이에 Si-CH2 결합이 존재한다는 사실이다. Si-CH2 결합은 양쪽의 Si에 의해 강하게 결합되어 있어서, BTMSM precursor를 사용하여 Si-O-C-H 박막은 유전상수도 작을 뿐 아니라, 열적으로도 안정된 특성이 얻어질 것으로 기대된다. Si-O-C-H 박막의 열적 안정성을 평가하기 위하여, 고온 열처리 전후의 FT-IR 스펙트럼 분석과 C-V(capacitance-voltage) 측정에 의한 유전상수 변화를 살펴보았다. 또한 증착된 박막의 미세구조 및 step coverage 특성 관찰을 위하여 SEM(scanning electron microscopy) 및 TEM(transmission electron micfroscopy) 분석을 하였다. 변화하였으며 이는 포토루미네슨스의 변화의 원인으로 판단된다. 연구하였다. CeO2 와 Si 사이의 계면을 TEM 측정에 의해 분석하였고, Ce와 O의 화학적 조성비를 RBS에 의해 측정하였다. Si(100) 기판위에 증착된 CeO2 는 $600^{\circ}C$ 낮은 증착률에서 seed layer를 하지 않은 조건에서 CeO2 (200) 방향으로 우선 성장하였으며, Si(111) 기판 위의 CeO2 박막은 40$0^{\circ}C$ 높은 증착률에서 seed layer를 2분이상 한 조건에서 CeO2 (111) 방향으로 우선 성장하였다. TEM 분석에서 CeO2 와 Si 기판사이에서 계면에서 얇은 SiO2층이 형성되었으며, TED 분석은 Si(100) 과 Si(111) 위에 증착한 CeO2 박막이 각각 우선 방향성을 가진 다결정임을 보여주었다. C-V 곡선에서 나타난 Hysteresis는 CeO2 박막과 Si 사이의 결함때문이라고 사료된다.phology 관찰결과 Ge 함량이 높은 박막의 입계가 다결정 Si의 입계에 비해 훨씬 큰 것으로 나타났으며 근 값도 증가하는 것으로 나타났다. 포유동물 세포에 유전자 발현벡터로써 사용할 수 있음으로 post-genomics시대에 다양한 종류의 단백질 기능연구에 맡은 도움이 되리라 기대한다.다양한 기능을 가진 신소재 제조에 있다. 또한 경제적인 측면에서도 고부가 가치의 제품 개발에 따른 새로운 수요 창출과 수익률 향상, 기존의 기능성 안료를 나노(nano)화하여 나노 입자를 제조, 기존의 기능성 안료에 대한 비용 절감 효과등을 유도 할 수 있다. 역시 기술적인 측면에서도 특수소재 개발에 있어 최적의 나노 입자 제어기술 개발 및 나노입자를 기능성 소재로 사용하여 새로운 제품의 제조와 고압 기상 분사기술의 최적화에 의한 기능성 나노 입자 제조 기술을 확립하고 2차 오염 발생원인 유기계 항균제를 무기계 항균제로 대

  • PDF