• 제목/요약/키워드: scanned point detecting method

검색결과 7건 처리시간 0.029초

Scanned point detecting method(SPDM)에 의한 플라즈마 디스플레이 패널의 828nm 광에 대한 3차원 측정과 해석 (The three-dimensional measurement and analysis for 828nm light emitted from plasma display panel by scanned point detecting method(SPDM))

  • 최훈영;정재완;이승걸;이석현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.284-287
    • /
    • 2000
  • We analyzed the 3-dimensional discharge characteristic in plasma display panel(PDP) cell using the 3-dimensional emission distribution of 828nm light measured by scanned point detecting method(SPDM). The emitted light distributions on the ITO electrode show the stronger light intensity near to the electrode gap than outside. Also, 828nm light is widely detected outside of the bus electrode. We consider that measurement using new SPDM is effective to analyze the discharge physics and propose the new panel structures.

  • PDF

광학적인 방법에 의한 플라즈마 디스플레이 패널의 3차원 광 방출 측정과 분석 (The Measurement and Analysis of Three-Dimensional Light Emitted from Plasma Disp1ay Panel by Optica1 Method)

  • 최훈영;이석현;이승걸
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권1호
    • /
    • pp.31-38
    • /
    • 2002
  • We measured a 3-dimensional images of the light emitted from plasma display panel(PDP) by using newly proposed scanned point detecting system. In the panel without phosphor, as we scan from the rear glass to the front glass, the detected light intensity increases and the light intensity detected in the inside edge of the ITO electrodes shows the stronger intensity than others. The light intensity detected between the barrier ribs shows the largest value of brightness. Also, as the sustain voltage increases, the detected light intensity increases. In the panel with phosphor, the intensity of light detected at barrier rib shows the stronger light intensity than rear plate. Therefore, the phosphor of barrier rib is very important. From these results the 3-dimensional measurement is necessary to understand exactly the discharge phenomenon in the PDP cell.

자동차 부품 형상 결함 탐지를 위한 측정 방법 개발 (Development of An Inspection Method for Defect Detection on the Surface of Automotive Parts)

  • 박홍석;우펜드라 마니 툴라다르;신승철
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.452-458
    • /
    • 2013
  • Over the past several years, many studies have been carried out in the field of 3D data inspection systems. Several attempts have been made to improve the quality of manufactured parts. The introduction of laser sensors for inspection has made it possible to acquire data at a remarkably high speed. In this paper, a robust inspection technique for detecting defects in 3D pressed parts using laser-scanned data is proposed. Point cloud data are segmented for the extraction of features. These segmented features are used for shape matching during the localization process. An iterative closest point (ICP) algorithm is used for the localization of the scanned model and CAD model. To achieve a higher accuracy rate, the ICP algorithm is modified and then used for matching. To enhance the speed of the matching process, aKd-tree algorithm is used. Then, the deviation of the scanned points from the CAD model is computed.

플라즈마 디스플레이 패널에서 압력에 3차원 시간 분해 측정 (The Measurement of Three-Dimensional Temporal Behavior According to the Pressure in the Plasma Display Panel)

  • 최훈영;이석현;이승걸
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권10호
    • /
    • pp.476-480
    • /
    • 2003
  • In this paper, we have performed 3-dimensional time-resolving measurement of the Ne light emitted from the cell of plasma display panel(PDP) as a function of the pressure using the scanned point detecting system. From the temporal behavior results, we could analyze the discharge behavior of panel with Ne-Xe(4%) mixing gas and 300 torr, 400 torr and 500 torr pressure. At the top view of panel, the discharge of 300 torr panel starts at the 634 ns and ends at the 722 ns. The emission duration time is about 90 ns. The discharge of 400 torr panel starts at the 682 ns and ends at the 786 ns. the emission duration time is about 100 ns. Also, the discharge of 500 torr panel starts at the 770 ns and ends at the 826 ns. the emission duration time is about 56 ns. The discharge moves from inner edge of cathode electrode to outer cathode electrode forming arc type. In the side view of 300 torr, 400 torr and 500 torr an emission shows that the light is detected up to 180${\mu}{\textrm}{m}$, 150${\mu}{\textrm}{m}$ and 70${\mu}{\textrm}{m}$ height of barrier rib and the emission distribution of the 300 torr is wider than 400 torr, 500 torr.

3-dimensional measurement for the light emitted from plasma display panel

  • Choi, Hoon-Young;Lee, Seung-Gol;Lee, Seok-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.99-100
    • /
    • 2000
  • We measured 3-dimensional images of the light emitted from plasma display panel by using newly proposed scanned point detecting method (SPDM). From the 3-dimensional emission images, we know that as the sustain voltage increases, intensity of light detected without phosphor increases and the position of the maximum intensity moves to the outside from the electrode gap. Also, we know that 2-dimensional simulations under the assumption that neglects the Y axis variation do not agree with 3-dimensional experiment results.

  • PDF

3차원 광 측정을 통한 PDP의 전극 구조별 방전 분석 (The Analysis for PDP Discharge as a Parameter of Electrode Structure by 3-Dimensional Light Emission Measurement)

  • 우석균;최훈영;이석현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권4호
    • /
    • pp.190-196
    • /
    • 2001
  • We measured 3-dimensional images of the light emitted from plasma display panel(PDP) by using newly proposed scanned point detecting method(SPDM). The SPDM has the point detector with pinhole. The light emitted from PDP cell at the in-focus position can pass through the pinhole and be collected by detector. On the contrary, the light emitted from PDP cell at the out-of-focus positions is focused on the front of or the behind of the pinhole. We could analyze the characteristic of 3-dimensional light emission distribution by SPDM. From 3-dimensional measurement of 828[nm], the efficient design of PDP cell, the importance of opening ration, and the relations between BUS electrode position and discharge intensity are obtained. Also, the relationship between discharge characteristics and sustain electrode structures in AC-PDP are studied by measuring luminance, current, and discharge voltage.

  • PDF

AC-PDP의 3차원 광 측정을 통한 방전 분석 (The 3-Dimensional Analysis for AC-PDP Discharge by Light Emission Measurement)

  • 우석균;최훈영;이승걸;이석현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.577-580
    • /
    • 2000
  • We measured 3-dimensional images of the light emitted from plasma display panel(PDP) by using newly proposed scanned point detecting method(SPDM). The SPDM has the point detector with pinhole. The light emitted from PDP cell at the in-focus position can pass through the pinhole and be collected by detector. On the contrary, the light emitted from PDP cell at the out-of-focus positions is focused on the front of or the behind of the pinhole. We could analyze the characteristic of 3-dimensional light emission distribution by SPDM. From 3-dimensional measurement of 828nm, we found that the efficient design of PDP cell, the importance of opening ratio, and the relations between BUS electrode position and discharge intensity are obtained.

  • PDF