• Title/Summary/Keyword: scan time

Search Result 1,248, Processing Time 0.026 seconds

Development of Wide-Band Planar Active Array Antenna System for Electronic Warfare (전자전용 광대역 평면형 능동위상배열 안테나 시스템 개발)

  • Kim, Jae-Duk;Cho, Sang-Wang;Choi, Sam Yeul;Kim, Doo Hwan;Park, Heui Jun;Kim, Dong Hee;Lee, Wang Yong;Kim, In Seon;Lee, Chang Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.467-478
    • /
    • 2019
  • This paper describes the development and measurement results of a wide-band planar active phase array antenna system for an electronic warfare jamming transmitter. The system is designed as an $8{\times}8$ triangular lattice array using a $45^{\circ}$ slant wide-band antenna. The 64-element transmission channel is composed of a wide-band gallium nitride(GaN) solid state power amplifier and a gallium arsenide(GaAs) multi-function core chip(MFC). Each GaAs MFC includes a true-time delay circuit to avoid a wide-band beam squint, a digital attenuator, and a GaAs drive amplifier to electronically steer the transmitted beam over a ${\pm}45^{\circ}$ azimuth angle and ${\pm}25^{\circ}$ elevation angle scan. Measurement of the transmitted beam pattern is conducted using a near-field measurement facility. The EIRP of the designed system, which is 9.8 dB more than the target EIRP performance(P), and the ${\pm}45^{\circ}$ azimuth and ${\pm}25^{\circ}$ elevation beam steering fulfill the desired specifications.

Risk factors for hospital admission in revisiting patients to the emergency department with abdominal pain

  • Bae, Jung Kwang;Kim, Hye Jin;Ryu, Seokyong;Choi, Seung Woon;Kang, Tae Kyung;Oh, Sung Chan;Cho, Suk Jin;Lee, Sun Hwa
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.29 no.6
    • /
    • pp.679-686
    • /
    • 2018
  • Objective: The aim of this study was to identify the clinical characteristics and risk factors associated with the admission of patients in the emergency department (ED) within 30 days after discharge. Methods: A retrospective, observational study was conducted on adult patients presenting with abdominal pain to the ED of a single, urban, university hospital, between January 2014 and December 2015, who revisited the ED within 30 days after discharge. Data was collected on the emergency severity index level, time to contact doctors, physical examination, laboratory tests, use of computed tomography (CT), and patient disposition on revisitation. The primary outcome was hospital admission following an ED revisit in the 30-day period after the first visit. Results: During the study period, 19,480 patients visited the ED with the chief complaint of abdominal pain, and 13,577 were discharged. A total of 251 patients (1.29%) revisited the ED within 30 days, of which 89 were eligible for the study. The primary outcome was associated with not performing a CT scan on the initial visit and an increased C-reactive protein (CRP) value. Receiver operating characteristic curve analysis showed that a cut-off baseline CRP value of >0.35 mg/dL can predict the primary outcome with a sensitivity and specificity of 75% and 62.1%, respectively (area under the curve, 0.701; 95% confidence interval, 0.569-0.833; P=0.007). Conclusion: An increased CRP value and not performing abdominal CT were associated with a higher rate of admission following ED revisits of patients with abdominal pain. Future prospective studies on the role of abdominal CT imaging in patients presenting to the ED with abdominal pain will be needed.

Study of Appropriate Increment during VRT Rendering before Musculoskeletal Surgery (근골격계 수술전 VRT Rendering시 적절한 increment에 대한 연구)

  • Gang, Heon-Hyo;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.675-681
    • /
    • 2019
  • The purpose of this study was to investigate the effect of increasing the amount of 3D volume imaging on the hand, knee, and foot human phantom in CT, After analyzing the data, three - dimensional volumetric images were implemented using MMWP program to evaluate reproducibility. First, the data amount of three human phantoms according to each increment was analyzed. Secondly, the reproducibility evaluation and the measured length were compared. As a result of analyzing the amount of image data for each phantom according to the increment, it was confirmed that the amount of data is reduced to about 1/10 when the increment is set to 1.0 mm as compared with the case where the increment is set to 0.1 mm. In the evaluation of the feasibility, gap was generated from 0.7mm for hand phantom, 0.6mm for knee phantom and foot phantom, and it was confirmed that even when the actual phantom and actual length were compared, the length was much different and the implementation was lowered. As the increment is closer to 1.0mm, the number of images is small and the 3D implementation time is small. Therefore, it is best to determine the increase before the gap of the image is generated and to apply the Increment for preoperative diagnosis. We hope that this study will be an indicator of the accurate increment setting when implementing 3D image through VRT Rendering after CT scan.

Fabrication of complete denture using 3D printing: a case report (3D 프린팅을 이용한 양악 총의치 제작 증례)

  • Lee, Eunsu;Park, Chan;Yun, Kwidug;Lim, Hyun-Pil;Park, Sangwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.202-210
    • /
    • 2022
  • Recently with the advance in digital dentistry, the fabrication of dentures using computer-aided design and computer-aided manufacturing (CAD-CAM) is on the rise. The denture designed through a CAD software can be produced in a 3-dimensional manufacturing process. This process includes a subtractive processing method such as milling and an additive processing method such as 3D printing and in which it can be applied efficiently in more complex structures. In this case, complete dentures were fabricated using Stereolithography (SLA)-based 3D printing to shorten the production time and interval of visits in patient with physical disabilities due to cerebral infarction. For definitive impression, the existing interim denture was digitally replicated and used as an individual tray. The definitive impression obtained with polyvinyl siloxane impression material was including information about the inclination and length of the maxillary anterior teeth, vertical dimension, and centric relation. In addition, facial scan data with interim denture was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a FDA-approved liquid photocurable resin. The denture showed adequate retention, support, and stability, and results were satisfied functionally and aesthetically.

A LiDAR-based Visual Sensor System for Automatic Mooring of a Ship (선박 자동계류를 위한 LiDAR기반 시각센서 시스템 개발)

  • Kim, Jin-Man;Nam, Taek-Kun;Kim, Heon-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1036-1043
    • /
    • 2022
  • This paper discusses about the development of a visual sensor that can be installed in an automatic mooring device to detect the berthing condition of a vessel. Despite controlling the ship's speed and confirming its location to prevent accidents while berthing a vessel, ship collision occurs at the pier every year, causing great economic and environmental damage. Therefore, it is important to develop a visual system that can quickly obtain the information on the speed and location of the vessel to ensure safety of the berthing vessel. In this study, a visual sensor was developed to observe a ship through an image while berthing, and to properly check the ship's status according to the surrounding environment. To obtain the adequacy of the visual sensor to be developed, the sensor characteristics were analyzed in terms of information provided from the existing sensors, that is, detection range, real-timeness, accuracy, and precision. Based on these analysis data, we developed a 3D visual module that can acquire information on objects in real time by conducting conceptual designs of LiDAR (Light Detection And Ranging) type 3D visual system, driving mechanism, and position and force controller for motion tilting system. Finally, performance evaluation of the control system and scan speed test were executed, and the effectiveness of the developed system was confirmed through experiments.

Effects of Blood Flow Restriction Exercise on the Alacrity and Balanced Capacity of Female University Students in Their 20s for Health-Care Increase (헬스케어증진을 위한 하지혈류제한운동이 20대 여대생의 순발력과 균형에 미치는 영향)

  • Seo, Tae-Hwa;Kim, Eun-Ho;Jeong, Yeon-Woo
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.333-340
    • /
    • 2020
  • This study aims to examine the effects of squat exercise on the vitality and balanced capacity of female university students in their 20s with lower blood flow control. This study selected 40 volunteers from normal adult women in their twenties. Blood flow restriction used Blood Flow Restriction bands (BFR bands). The application method was to put on a blood flow restriction belt in the lower leg of the restricted blood flow area and put 120 mmHg of pressure to limit blood flow while the subject was standing comfortably. It was found that there were statistically significant differences in Height, Maximum concentric power and Take off speed between two groups(p<.05), There was statistically unimportant differences in foot scan between two groups(p>.05). This study found that to find out the changes in balance and alacrity, the experimental and control groups were divided into two groups. In conclusion, there were no significant differences in balance capability, but there were significant differences over time in net power.

A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study

  • Yanwei Zhao;Xujia Luo;Kemian Qin;Guorui Liu;Daiyuan Chen;R.S. Augusto;Weixiong Zhang;Xiaogang Luo;Chunxian Liu;Juntao Liu;Zhiyi Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.681-689
    • /
    • 2023
  • Purpose: Muons are characterized by a strong penetrating ability and can travel through thousands of meters of rock, making them ideal to image large volumes and substances typically impenetrable to, for example, electrons and photons. The feasibility of 3D image reconstruction and material identification based on a cosmic ray muons tomography (MT) system with triangular bar plastic scintillator detectors has been verified in this paper. Our prototype shows potential application value and the authors wish to apply this prototype system to 3D imaging. In addition, an MT experiment with the same detector system is also in progress. Methods: A simulation based on GEANT4 was developed to study cosmic ray muons' physical processes and motion trails. The yield and transportation of optical photons scintillated in each triangular bar of the detector system were reproduced. An image reconstruction algorithm and correction method based on muon scattering, which differs from the conventional PoCA algorithm, has been developed based on simulation data and verified by experimental data. Results: According to the simulation result, the detector system's position resolution is below 1 ~ mm in simulation and 2 mm in the experiment. A relatively legible 3D image of lead bricks in size of 20 cm × 5 cm × 10 cm used our inversion algorithm can be presented below 1× 104 effective events, which takes 16 h of acquisition time experimentally. Conclusion: The proposed method is a potential candidate to monitor the cosmic ray MT accurately. Monte Carlo simulations have been performed to discuss the application of the detector and the simulation results have indicated that the detector can be used in cosmic ray MT. The cosmic ray MT experiment is currently underway. Furthermore, the proposal also has the potential to scan the earth, buildings, and other structures of interest including for instance computerized imaging in an archaeological framework.

Survey of coastal topography using images from a single UAV (단일 UAV를 이용한 해안 지형 측량)

  • Noh, Hyoseob;Kim, Byunguk;Lee, Minjae;Park, Yong Sung;Bang, Ki Young;Yoo, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1027-1036
    • /
    • 2023
  • Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.

Spontaneous Resolution Rate and Predictive Factors of Resolution in Children with Primary Vesicoureteral Reflux (소아에서 일차성 방광요관역류의 자연소실율 및 관련 인자)

  • Kang, Eun-Young;Kim, Min-Sun;Kwon, Keun-Sang;Park, Eun-Hye;Lee, Dae-Yeol
    • Childhood Kidney Diseases
    • /
    • v.11 no.1
    • /
    • pp.74-82
    • /
    • 2007
  • Purpose : To analyze the clinical characteristics, spontaneous resolution rate and predictive factors of resolution in children with primary vesicoureteral reflux(VUR). Methods : Between October 1991 and July 2003, 149 children diagnosed with primary VUR at Chonbuk National University Hospital were reviewed retrospectively. All of the patients were maintained on low-dose antibiotic prophylaxis and underwent radionuclide cystograms at 1 year intervals over 3 years after the initial diagnosis of VUR by voiding cystourethrogram was made. Results : The median time to resolution of VUR was 24 months and the total 3 year-cumulative resolution rate of VUR was 61.7%. The following variables were associated with resolution of VUR according to univariate analysis-; age<1 year, male gender, mild grade of reflux, unilateral reflux, congenital hydronephrosis as clinical presentation at time of diagnosis of VUR, absence of focal defects in the renal scan at diagnosis, absence of recurrent UTI, renal scars and small kidney during follow-up. After adjustment by Cox regression model, five variables remained as independent predictors of VUR resolution; age<1 yew, relative risk 1.77(P<0.05), VUR grade I+II 2.98(P<0.05), absence of renal scars 2.23(P<0.05), and absence of small kidney 5.20(P<0.01) during follow-up. Conclusion : In this study, spontaneous resolution rate of VUR, even high grade reflux, is high in infants during medical management, and it was related to age, reflux grade at diagnosis, absence of renal scars and small kidney during follow-up. Therefore early surgical intervention should be avoided and reserved for the selected groups.

  • PDF

The Understanding and Application of Noise Reduction Software in Static Images (정적 영상에서 Noise Reduction Software의 이해와 적용)

  • Lee, Hyung-Jin;Song, Ho-Jun;Seung, Jong-Min;Choi, Jin-Wook;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • Purpose: Nuclear medicine manufacturers provide various softwares which shorten imaging time using their own image processing techniques such as UlatraSPECT, ASTONISH, Flash3D, Evolution, and nSPEED. Seoul National University Hospital has introduced softwares from Siemens and Philips, but it was still hard to understand algorithm difference between those two softwares. Thus, the purpose of this study was to figure out the difference of two softwares in planar images and research the possibility of application to images produced with high energy isotopes. Materials and Methods: First, a phantom study was performed to understand the difference of softwares in static studies. Various amounts of count were acquired and the images were analyzed quantitatively after application of PIXON, Siemens and ASTONISH, Philips, respectively. Then, we applied them to some applicable static studies and searched for merits and demerits. And also, they have been applied to images produced with high energy isotopes. Finally, A blind test was conducted by nuclear medicine doctors except phantom images. Results: There was nearly no difference between pre and post processing image with PIXON for FWHM test using capillary source whereas ASTONISH was improved. But, both of standard deviation(SD) and variance were decreased for PIXON while ASTONISH was highly increased. And in background variability comparison test using IEC phantom, PIXON has been decreased over all while ASTONISH has shown to be somewhat increased. Contrast ratio in each spheres has also been increased for both methods. For image scale, window width has been increased for 4~5 times after processing with PIXON while ASTONISH showed nearly no difference. After phantom test analysis, ASTONISH seemed to be applicable for some studies which needs quantitative analysis or high contrast, and PIXON seemed to be applicable for insufficient counts studies or long time studies. Conclusion: Quantitative values used for usual analysis were generally improved after application of the two softwares, however it seems that it's hard to maintain the consistency for all of nuclear medicine studies because result images can not be the same due to the difference of algorithm characteristic rather than the difference of gamma cameras. And also, it's hard to expect high image quality with the time shortening method such as whole body scan. But it will be possible to apply to static studies considering the algorithm characteristic or we can expect a change of image quality through application to high energy isotope images.

  • PDF