• 제목/요약/키워드: scaling parameters

검색결과 302건 처리시간 0.025초

Analysis of Scaling Parameters of the Batch Unscented Transformation for Precision Orbit Determination using Satellite Laser Ranging Data

  • Kim, Jae-Hyuk;Park, Sang-Young;Kim, Young-Rok;Park, Eun-Seo;Jo, Jung-Hyun;Lim, Hyung-Chul;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권3호
    • /
    • pp.183-192
    • /
    • 2011
  • The current study analyzes the effects of the scaling parameters of the batch unscented transformation on precision satellite orbit determination. Satellite laser ranging (SLR) data are used in the orbit determination algorithm, which consists of dynamics model, observation model and filtering algorithm composed of the batch unscented transformation. TOPEX/Poseidon SLR data are used by utilizing the normal point (NP) data observed from ground station. The filtering algorithm includes a repeated series of processes to determine the appropriate scaling parameters for the batch unscented transformation. To determine appropriate scaling parameters, general ranges of the scaling parameters of ${\alpha}$, ${\beta}$, k, $\lambda$ are established. Depending on the range settings, each parameter was assigned to the filtering algorithm at regular intervals. Appropriate scaling parameters are determined for observation data obtained from several observatories, by analyzing the relationship between tuning properties of the scaling parameters and estimated orbit precision. The orbit determination of satellite using the batch unscented transformation can achieve levels of accuracy within several tens of cm with the appropriate scaling parameters. The analyses in the present study give insights into the roles of scaling parameters in the batch unscented transformation method.

Manual Scaling of Ionograms Measured at Jeju (33.4°N, 126.3°E) Throughout 2012

  • Jeong, Se-Heon;Kim, Yong Ha;Kim, Ki-nam
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권3호
    • /
    • pp.143-149
    • /
    • 2018
  • The ionosphere has been monitored by ionosondes for over five decades since the 1960s in Korea. An ionosonde typically produces an ionogram that displays radio echoes in the frequency-range plane. The trace of echoes in the plane can be read either manually or automatically to derive useful ionospheric parameters such as foF2 (peak frequency of the F2 layer) and hmF2 (peak height of the F2 layer). Monitoring of the ionosphere should be routinely performed in a given time cadence, and thus, automatic scaling of an ionogram is generally executed to obtain ionospheric parameters. However, an auto-scaling program can generate undesirable results that significantly misrepresent the ionosphere. In order to verify the degree of misrepresentation by an auto-scaling program, we performed manual scaling of all 35,136 ionograms measured at Jeju ($33.43^{\circ}N$, $126.30^{\circ}E$) throughout 2012. We compared our manually scaled parameters (foF2 and hmF2) with auto-scaled parameters that were obtained via the ARTIST5002 program. We classified five cases in terms of the erroneous scaling performed by the program. The results of the comparison indicate that the average differences with respect to foF2 and hmF2 between the two methods approximately correspond to 0.03 MHz and 4.1 km, respectively with corresponding standard deviations of 0.12 MHz and 9.58 km. Overall, 36 % of the auto-scaled results differ from the manually scaled results by the first decimal number. Therefore, future studies should be aware of the quality of auto-scaled parameters obtained via ARTIST5002. Hence, the results of the study recommend the use of manually scaled parameters (if available) for any serious applications.

Sensorless Speed Control of Permanent Magnet Synchronous Motor by Unscented Kalman Filter using Various Scaling Parameters

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.347-352
    • /
    • 2016
  • This paper investigates the application, design and implementation of unscented Kalman filter observer using the various scaling parameters for the sensorless speed control of a permanent magnet synchronous motor. The principles of unscented transformation and unscented Kalman filter are examined and their applications are explained. Typically the mapping transformation process is divided into two types, namely the basic unscented transformation and the general unscented transformation by virtue of the scaling parameter value. And resultantly, the number of sampling points, weights, code configuration and computation time are different. But there is no little information on the scaling parameter value or how this value influences the system performance. To analyze the unscented transformation with the various scaling parameters in this study, the experimental results under a wide range of operation condition have been demonstrated.

COMPREHENSIVE SCALING METHOD WITH VALIDATION FOR APPLICATION TO SB-LOCAS OF A PASSIVE PWR

  • Lee, Sang-Il;No, Hee-Cheon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.263-269
    • /
    • 1996
  • A comprehensive scaling method is proposed for a scaled-down facility simulating SBLOCA in the CARR passive reactor (CP-1300). The present method consists of two stages: scaling methodology, and validation of scaling methodology and code. The present scaling methodology is based on the integral response scaling method. Through sensitivity study, the condensation of the top of the CMT is identified as one of the little-known phenomenon with high importance which should be addressed for the applicability of the code. Using the similarity of the derived scaling parameters, the major component geometries of the scaled-down facility are determined. In the case of 1/4 height and 1/100 area ratio scaling, it is found out that the power ratio is the same as the area ratio, and the present scaling methodology generates the design parameters of the scaled-down facility without any distortion.

  • PDF

시이섭동기법을 이용한 모델 절감화의 오금 산정 및 관련 파라미터의 추정에 관한 연구 (A Study on Errors and Selection of Associated Parameters in Model Simplification Using Singular Perturbation Technique)

  • 천희영;박귀태;이기상
    • 대한전기학회논문지
    • /
    • 제32권2호
    • /
    • pp.43-49
    • /
    • 1983
  • In this study, model simplification problem using singular perturbation technique is considered. The correctness and errors of simplified model which is obtained by the use of this technique, depends upon the order and the time scaling factor of the simplified model But, unfortunately, there is no explicit criteria for selections of these parameters. In this paper, error equations are derived and expanded by using the useful properties of $L_2$-norm. Then, new criteria for selecting the order of the simplified model and time scaling factor with respect to error bound are suggested. Since these criteria, newly proposed in this study, have strong concern about error bound, it can be used to choose the minimum order of the simplified model and time scaling factor with respect to given error bound. Conversely, if the order of the simplified model and time scaling factor are given, the error induced by the simplification can also be computed easily.

Application of Scaling Theories to Estimate Particle Aggregation in a Colloidal Suspension

  • Park, Soongwan;Koo, Sangkyun
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.260-266
    • /
    • 2022
  • Average aggregate size in particulate suspensions is estimated with scaling theories based on fractal concept and elasticity of colloidal gel. The scaling theories are used to determine structure parameters of the aggregates, i.e., fractal dimension and power-law exponent for aggregate size reduction with shear stress using scaling behavior of elastic modulus and shear yield stress as a function of particle concentration. The structure parameters are utilized to predict aggregate size which varies with shear stress through rheological modeling. Experimentally rheological measurement is conducted for aqueous suspension of zinc oxide particles with average diameter of 110 nm. The predicted aggregate size is about 1135 nm at 1 s-1 and 739 nm at 1000 s-1 on the average over the particle concentrations. It has been found that the predicted aggregate size near 0.1 s-1 agrees with that the measured one by a dynamic light scattering analyzer operated un-sheared.

Impact of geometrical parameters on SGEMP responses in cylinder model

  • Chen, Jian-Nan;Zhang, Jun-Jie
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3415-3421
    • /
    • 2022
  • This paper is aimed to find out the impact of the geometrical parameters, mainly the radius and the height of a cylinder, on the SGEMP response including the famous scaling law in the classical cylinder model using a homemade PIC code UNIPIC-3D. We computed the electric fields at the center and at the edge on the emission head face with different radii and heights under normal X-rays incidence. The results show that the electric field will increase with the radius but decrease with the height. We analyze the scaling law that links the electric field product and fluence product, and whereafter an irreconcilable contradiction raises when the radius is changeable, which limits the application range of the scaling law. Moreover, the field-height-radius relation is found and described by a combination of logarithmic and minus one-quarter numerical fitting law firstly. Particle and magnetic field distributions are used to explain all the behaviors of the fields reasonably. All the findings will assist the evaluation of SGEMP response in spacecraft protection.

Predictions of the Marviken Subcooled Critical Mass Fuel Using the Critical Flow Scaling Parameters

  • Park, Choon-Kyung;Chun, Se-Young;Seok-Cho;Yang, Sun-Ku;Chung, Moon-Ki
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.522-527
    • /
    • 1997
  • A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling( $C_{d, ref}$ and $\Delta$ $T^{*}$$_{sub}$). The agreement between the measured data and the predictions are excellent.t.ons are excellent.t.

  • PDF

무인 컨테이너 운송 조향 제어의 적응 퍼지 제어와 응용 (Design of the Adaptive Fuzzy Control Scheme and its Application on the Steering Control of the UCT)

  • 이규준;이영진;윤영진;이원구;김종식;이만형
    • 한국항만학회지
    • /
    • 제15권1호
    • /
    • pp.37-46
    • /
    • 2001
  • Fuzzy logic control(FLC) is composed of three parts : fuzzy rule-bases, membership functions, and scaling factors. Well-defined fuzzy rule-base should contain proper physical intuition on the plant, so are needed lots of experiences of the skillful expert. When membership functions are considered, some parameters on the memberships function such as function shape, support, allocation density should be selected well. The rule of scaling factors is 'scaling'(amplifying or reducing) for both input and output signals of the FLC to fit in the membership function support and to operate the plant intentionally. To get a better performance of the FLC, it is necessary to adjust the parameters of the FLC. In general, the adaptation of the scaling factors is the most effective adjustment scheme, compared with that of the fuzzy rule-base or membership function parameters. This study proposes the adaptation scheme of the scaling factors. When the adaptation is performed on-line, the stability of the adaptive FLC should be guaranteed. The stable FLC system can be designed with stability analysis in the sense of Lyapunov stability. To adapt the scaling factors for the error signals, the concept of the conventional MRAC would be introduced into slightly modified form. A tracking accuracy of the control system would be enhanced by the modified shape and support of the membership function. The simulation is achieved on the pilot plant with the hydraulic steering control of a UCT(Unmanned Container Transporter) of which modeling dynamics have lots of severe uncertainties and modeling errors.

  • PDF

Scaling analysis of the pressure suppression containment test facility for the small pressurized water reactor

  • Liu, Xinxing;Qi, Xiangjie;Zhang, Nan;Meng, Zhaoming;Sun, Zhongning
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.793-803
    • /
    • 2021
  • The small PWR has been paid more and more attention due to its diversity of application and flexibility in the site selection. However, the large core power density, the small containment space and the rapid accident progress characteristics make it difficult to control the containment pressure like the traditional PWR during the LOCA. The pressure suppression system has been used by the BWR since the early design, which is a suitable technique that can be applied to the small PWR. Since the configuration and operating conditions are different from the BWR, the pressure suppression system should be redesigned for the small PWR. Conducting the experiments on the scale down test facility is a good choice to reproduce the prototypical phenomena in the test facility, which is both economical and reasonable. A systematic scaling method referring to the H2TS method was proposed to determine the geometrical and thermohydraulic parameters of the pressure suppression containment response test facility for the small PWR conceptual design. The containment and the pressure suppression system related thermohydraulic phenomena were analyzed with top-down and bottom-up scaling methods. A set of the scaling criteria were obtained, through which the main parameters of the test facility can be determined.