• 제목/요약/키워드: scaling parameter

검색결과 144건 처리시간 0.027초

Implementation and Design of a Fuzzy Power System Stabilizer Using an Adaptive Evolutionary Algorithm

  • Hwang, Gi-Hyun;Lee, Min-Jung;Park, June-Ho;Kim, Gil-Jung
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권4호
    • /
    • pp.181-190
    • /
    • 2003
  • This paper presents the design of a fuzzy power system stabilizer (FPSS) using an adaptive evolutionary algorithm (AEA). AEA consists of genetic algorithm (GA) for a global search capability and evolution strategy (ES) for a local search in an adaptive manner when the present generation evolves into the next generation. AEA is used to optimize the membership functions and scaling factors of the FPSS. To evaluate the usefulness of the FPSS, we applied it to a single-machine infinite bus system (SIBS) and a power system simulator at the Korea Electrotechnology Research Institute. The FPSS displays better control performance than the conventional power system stabilizer (CPSS) for a three-phase fault in heavy load, which is used when tuning FPSS. To show the robustness of the FPSS, it is applied with disturbances such as change of mechanical torque and three-phase fault in nominal and heavy load, etc. The FPSS also demonstrates better robustness than the CPSS. Experimental results indicate that the FPSS has good system damping under various disturbances such as one-line to ground faults, line parameter changes, transformer tap changes, etc.

Post-reionization Kinetic Sunyaev-Zel'dovich Effect in Illustris Simulation

  • Park, Hyunbae;Sabiu, Cristiano;Li, Xiao-dong;Park, Changbom;Kim, Juhan
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.52.2-53
    • /
    • 2017
  • We develop a methodology to use the redshift dependence of the galaxy 2-point correlation function (2pCF) as a probe of cosmological parameters. The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. This geometrical distortion can be observed as a redshift-dependent rescaling in the measured 2pCF. The shape of the 2pCF exhibits a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. Other contributions, including the gravitational growth of structure, galaxy bias, and the redshift space distortions, do not produce large redshift evolution in the shape. We show that one can make use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This method could be applicable to future large scale structure surveys, especially photometric surveys such as DES, LSST, to derive tight cosmological constraints. This work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities.

  • PDF

ASSESSMENT OF STABILITY MAPS FOR HEATED CHANNELS WITH SUPERCRITICAL FLUIDS VERSUS THE PREDICTIONS OF A SYSTEM CODE

  • Ambrosini, Walter;Sharabi, Medhat Beshir
    • Nuclear Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.627-636
    • /
    • 2007
  • The present work is aimed at further discussing the effectiveness of dimensionless parameters recently proposed for the analysis of flow stability in heated channels with supercritical fluids. In this purpose, after presenting the main motivations for the introduction of these parameters in place of previously proposed ones, additional information on the theoretical bases and on the consequences of this development is provided. Stability maps, generated by an in-house program adapted from a previous application to boiling channels, are also shown for different combinations of the operating parameters. The maps are obtained as contour plots of an amplification parameter obtained from numerical discretization and subsequent linearization of governing equations; as such, they provide a quantitatively clear perspective of the effect of different boundary conditions on the stability of heated channels with supercritical fluids. In order to assess the validity of the assumptions at the basis of the in-house model, supporting calculations have been performed making use of the RELAP5/MOD3.3 computer code, detecting the values of the dimensionless parameters at the threshold for the occurrence of instability for a heated channel representative of SCWR proposed core configurations. The obtained results show reasonable agreement with the maps, supporting the applicability of the proposed scaling parameters for describing the dynamic behaviour of heated channels with supercritical fluids.

Development of a prediction model relating the two-phase pressure drop in a moisture separator using an air/water test facility

  • Kim, Kihwan;Lee, Jae bong;Kim, Woo-Shik;Choi, Hae-seob;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3892-3901
    • /
    • 2021
  • The pressure drop of a moisture separator in a steam generator is the important design parameter to ensure the successful performance of a nuclear power plant. The moisture separators have a wide range of operating conditions based on the arrangement of them. The prediction of the pressure drop in a moisture separator is challenging due to the complexity of the multi-dimensional two-phase vortex flow. In this study, the moisture separator test facility using the air/water two-phase flow was used to predict the pressure drop of a moisture separator in a Korean OPR-1000 reactor. The prototypical steam/water two-phase flow conditions in a steam generator were simulated as air/water two-phase flow conditions by preserving the centrifugal force and vapor quality. A series of experiments were carried out to investigate the effect of hydraulic characteristics such as the quality and liquid mass flux on the two-phase pressure drop. A new prediction model based on the scaling law was suggested and validated experimentally using the full and half scale of separators. The suggested prediction model showed good agreement with the steam/water experimental results, and it can be extended to predict the steam/water two-phase pressure drop for moisture separators.

Stability and normal zone propagation in YBCO tapes with Cu stabilizer depending on cooling conditions at 77 K

  • Kruglov, S.L.;Polyakov, A.V.;Shutova, D.I.;Topeshkin, D.A.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권4호
    • /
    • pp.14-19
    • /
    • 2020
  • Here we present the comparative experimental study of the stability of the superconducting state in 4 mm YBCO tapes with copper lamination against local heat disturbances at 77 K. The samples are either directly cooled by immersing a bare YBCO tape into a liquid nitrogen pool or operate in nearly-adiabatic conditions when the tape is covered by a 0.6 mm layer of Kapton insulation. Main quench characteristics, i.e. minimum quench energies (MQEs) and normal zone propagation (NZP) velocities for both samples are measured and compared. Minimum NZP currents are determined by a low ohmic resistor technique eligible for obtaining V - I curves with a negative differential resistance. The region of transport currents satisfying the stationary stability criterion is found for the different cooling conditions. Finally, we use the critical temperature margin as a universal scaling parameter to compare the MQEs obtained in this work for YBCO tapes at 77 K with those taken from literature for low-temperature superconductors in vacuum at 4.2 K, as well as for MgB2 wires cooled with a cryocooler down to 20 K.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • 제10권1호
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

자가학습과 지식증류 방법을 활용한 LiDAR 3차원 물체 탐지에서의 준지도 도메인 적응 (Semi-Supervised Domain Adaptation on LiDAR 3D Object Detection with Self-Training and Knowledge Distillation)

  • 우정완;김재열;임성훈
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.346-351
    • /
    • 2023
  • With the release of numerous open driving datasets, the demand for domain adaptation in perception tasks has increased, particularly when transferring knowledge from rich datasets to novel domains. However, it is difficult to solve the change 1) in the sensor domain caused by heterogeneous LiDAR sensors and 2) in the environmental domain caused by different environmental factors. We overcome domain differences in the semi-supervised setting with 3-stage model parameter training. First, we pre-train the model with the source dataset with object scaling based on statistics of the object size. Then we fine-tine the partially frozen model weights with copy-and-paste augmentation. The 3D points in the box labels are copied from one scene and pasted to the other scenes. Finally, we use the knowledge distillation method to update the student network with a moving average from the teacher network along with a self-training method with pseudo labels. Test-Time Augmentation with varying z values is employed to predict the final results. Our method achieved 3rd place in ECCV 2022 workshop on the 3D Perception for Autonomous Driving challenge.

Choline chloride-Glycerol (1:2 mol) as draw solution in forward osmosis for dewatering purpose

  • Dutta, Supritam;Dave, Pragnesh;Nath, Kaushik
    • Membrane and Water Treatment
    • /
    • 제13권2호
    • /
    • pp.63-72
    • /
    • 2022
  • Choline chloride-glycerol (1:2 mol), a natural deep eutectic solvent (NADES) is examined as a draw solution in forward osmosis (FO) for dewatering application. The NADES is easy to prepare, low in toxicity and environmentally benign. A polyamide thin film composite membrane was used. Characterization of the membrane confirmed porous membrane structure with good hydrophilicity and a low structural parameter (722 ㎛) suitable for FO application. A dilute solution of 20% (v/v) NADES was enough to generate moderate water flux (14.98 L m-2h-1) with relatively low reverse solute flux (0.125 g m-2h-1) with deionized water feed. Application in dewatering industrial wastewater feed showed reasonably good water flux (11.9 L m-2h-1) which could be maintained by controlling the external concentration polarization and fouling/scaling mitigation via simple periodic deionized water wash. In another application, clarified sugarcane juice could be successfully concentrated. Recovery of the draw solute was accomplished easily by chilling utilizing thermo responsive phase transition property of NADES. This study established that low concentration NADES can be a viable alternative as a draw solute for dewatering of wastewater and other heat sensitive applications along with a simple recovery process.

복합재 튜브를 이용한 고속 열차의 에너지 흡수장치에 대한 실험 및 수치해석 연구 (Experimental and Numerical Studies on Composite Tubes for the Energy Absorber of High-speed Train)

  • ;장홍규;신재환;손유나;김천곤
    • Composites Research
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2011
  • 본 논문에서는 복합재료 튜브를 이용한 고속 열차의 에너지 흡수장치에 대한 실험 및 수치 해석에 관한 연구를 수행하였다. 논문의 목적은 에너지 흡수장치에 대한 최적의 적층(lay-up) 형태를 알아내는 것으로, quasi static method를 이용한 네 가지 적층 형태에 대한 실험을 수행 하였다: $[0/45/90/-45]_4$, $[0]_{16}$, $[0/90]_8$, $[0/30/-30]_5$, 실험을 위해 초기 파괴 시작점을 생성하고, 일정 방향으로 진행되는 파괴를 만들기 위해 베벨 엣지(bevel edge)와 노치 엣지(notch edge)의 두 가지 트리거링 방법을 이용하였다. 저속 충돌실험 결과 $[0/45/90/-45]_4$의 적층 형태가 다른 방법과 비교해서 가장 좋은 에너지 흡수 결과를 보여주였다. 수치해석을 위해 LS-DYNA 프로그램의 변수 분석(parametric analysis)을 통해 가장 적합한 복합재료의 quasi static 실험 시뮬레이션 방법 연구를 수행하였다. 움직이는 벽이 복합재 튜브에 저속 충돌하는 모델을 가정하여 해석을 수행하였으며, 실험값과 수치해석 결과의 비교를 통해 비슷한 경향을 보임을 확인 하였다. 특히 TFAIL과 mass scaling factor를 조절하며 수행하는 변수 분석은 LS-DYNA에서 복합재 튜브의 quasi static 실험을 시뮬레이션 하는 능력과 한계를 보여준다.

다중해상도 탐색을 이용한 반복 일반화 허프 변환 (Iterative Generalized Hough Transform using Multiresolution Search)

  • 이경미
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권10호
    • /
    • pp.973-982
    • /
    • 2003
  • 이 논문은 주어진 영상에 존재하는 물체를 자동적으로 탐지하기 위한 시간과 공간 효율적인 방법을 소개한다. 일반화 허프 변환(Generalized Hough Transform: GHT)은 다양한 모양의 물체를 찾기 위해 자동 물체 탐지를 하는 강력한 템플릿(template) 매칭 알고리즘이다. 다양한 모양과 크기의 물체를 찾기 위해 서로 다른 많은 템플릿을 GHT에 적용해야 한다. GHT로 찾아진 모든 경계선은 보다 정교한 경계선을 찾기 위한 초기 외곽선으로 사용된다. 그러나, GHT의 주요 단점은 과도한 시간과 공간을 요구하는 것이다. 이런 단점을 극복하기 위해서, 제안된 알고리즘은 공간 효율적 방법인 반복적 GHT(iterative GHT: IGHT)를 사용한다. 또한, 원래 영상의 크기를 이분의 일 크기와 사분의 일 크기로 줄여서 다중 해상도 탐색을 이용한다. 사분의 일 영상에서 첫 번째 IGHT를 수행하여 획득한 정보를 이용하고, 세포 크기의 범위를 줄여 이분의 일 크기의 영상에서 탐색공간을 제한한다. 이분의 일 크기의 영상에서 두 번째 IGHT를 수행한 후, 세포핵은 세부 탐색에 의해 찾아지고, 정확한 경계선을 결정하기 위한 에지 정보에 의해 분할된다. 실험결과는 이 방법이 정확도의 손실이 없으면서, 수행시간과 메모리 사용을 줄이고 있음을 보여준다.