• Title/Summary/Keyword: scaling parameter

Search Result 144, Processing Time 0.027 seconds

A Theory on Phase Behaviors of Diblock Copolymer/Homopolymer Blends

  • 윤경섭;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.873-885
    • /
    • 1995
  • The local structural and thermodynamical properties of blends A-B/H of a diblock copolymer A-B and a homopolymer H are studied using the polymer reference interaction site model (RISM) integral equation theory with the mean-spherical approximation closure. The random phase approximation (RPA)-like static scattering function is derived and the interaction parameter is obtained to investigate the phase transition behaviors in A-B/H blends effectively. The dependences of the microscopic interaction parameter and the macrophase-microphase separation on temperature, molecular weight, block composition and segment size ratio of the diblock copolymer, density, and concentration of the added homopolymer, are investigated numerically within the framework of Gaussian chain statistics. The numerical calculations of site-site interchain pair correlation functions are performed to see the local structures for the model blends. The calculated phase diagrams for A-B/H blends from the polymer RISM theory are compared with results by the RPA model and transmission electron microscopy (TEM). Our extended formal version shows the different feature from RPA in the microscopic phase separation behavior, but shows the consistency with TEM qualitatively. Scaling relationships of scattering peak, interaction parameter, and temperature at the microphase separation are obtained for the molecular weight of diblock copolymer. They are compared with the recent data by small-angle neutron scattering measurements.

Semi-rigid connection modeling for steel frameworks

  • Liu, Yuxin
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.431-457
    • /
    • 2010
  • This article provides a discussion of the mathematic modeling of connections for designing and qualifying structures, systems, and components subject to monotonic or cyclic loading. To characterize the force-deformation behavior of connections under monotonic loading, a review of the Ramberg-Osgood, Richard-Abbott, and Menegotto-Pinto models is conducted, and it is shown that these nonlinear functions can be mathematically derived by scaling up or down a linear force-deformation function. A generalized four-parameter model for simulating connection behavior is investigated to facilitate nonlinear regression analysis. In order to perform seismic analysis of frameworks, a hysteretic model accounting for loading, unloading, and reloading is described using the established monotonic model. For preliminary analysis, a method is provided to quickly determine the model parameters that fit approximately with the observed data. To reach more accurate values of the parameters, the methods of nonlinear regression analysis are investigated and the modified Levenberg-Marquardt and separable nonlinear least-square algorithms are applied in determining the model parameters. Example case studies illustrate the procedure for the computation through the use of experimental/analytical data taken form the literature. Transformation of connection curves from the three-parameter model to the four-parameter model for structural analysis is conducted based on the modeling of connections subject to fire.

Hierarchical structure parameters in three dimensional turbulence: She-Leveque model

  • Ahmad, Imtiaz;Hadj-Taieb, Lamjed;Hussain, Muzamal;Khadimallah, Mohamed A.;Taj, Muhammad;Alshoaibi, Adil
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.747-755
    • /
    • 2022
  • Hierarchical structure parameters, proposed in She-Leveque model, are investigated for velocity components obtained from different flow types over a large range of Reynolds numbers 255 < Re𝜆 < 720. The values of intermittency parameter 𝛽, with respect to a fixed velocity component, are observed nearly same for all four types of turbulence. The parameter 𝛾, for streamwise velocity components is nearly the same but significantly different for vertical components in different flows. It is also observed that for both parameters, an obvious relation between the longitudinal and transverse components 𝛽T < 𝛽L (and 𝛾T < 𝛾L) always holds. However, the difference between 𝛽L and 𝛽T is found very small in all types of turbulent flows, we studied here. It is evidenced that at low Reynolds numbers, the deviations from K41 scaling are mainly due to the most intense structures and slightly because of more heterogeneous hierarchy of fluctuation structures. However, at higher Reynolds numbers the deviations seem as a consequence of the most intense structures only. Over all, the study suggests that the hierarchy parameter 𝛽 may be consider as a universal constant.

Application of a New Scaling Parameter to Chain Expansion in the Systems of Polystyrene/Mixed Solvents (폴리스티렌/혼합용매 계에서 사슬의 팽창에 대한 새로운 스케일링 파라미터의 적용)

  • Park, Il-Hyun;Lee, Dong-Il;Hwang, Mi-Ok;Yu, Young-Chol;Park, Ki-Sang
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.98-104
    • /
    • 2007
  • The expansion behavior of polystyrene (PS) chains with various molecular weights has been investigated above Flory $\Theta$temperature by viscometry after dissolving in the three different mixed solvents systems such as benzene/n-heptane, 1,4-dioxane/isopropanol, and 1,4-dioxane/n-heptane. Two different regimes are observed as increasing temperature: one regime is for the expansion of chain and the other is for the contraction. For the higher molecular weight sample of PS, the higher peak temperature showing its maximum expansion is obtained. Within a certain system of Ps/mixed solvents, the $\tau/\tau_c$ parameter shows universality for the variation of molecular weight. But while each system of Ps/mixed solvents has shown its own different slope, the universality breaks down in the overall system of mixed solvents. However after introducing a new empirical $b^{2/3}\tau/\tau_c$ parameter, all data points of three different systems have dropt on one master curve and the universality of chain expansion has recovered again. Here $\tau$ and $\tau_c$ are defined as $(T-\Theta)/\Theta$ and $(\Theta-T_c)/T_c$, respectively and $T_c$ is the critical solution temperature, and b of Schultz-Flory equation is corresponding to the effective slope in the plot of $1/T_c$ against $1/M_w^{1/2}$.

The NAND Type Flash EEPROM Using the Scaled SONOSFET (Scaled SONOSFET를 이용한 NAND형 Flash EEPROM)

  • 김주연;권준오;김병철;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.145-150
    • /
    • 1998
  • 8$\times$8 bit scaled SONOSFET NAND type flash EEPROM that shows better characteristics on cell density and endurance than NOR type have been designed and its electrical characteristics are verified with computer aided simulation. For the simulation, the spice model parameter was extracted from the sealed down SONOSFET that was fabricated by $1.5mutextrm{m}$ topological design rule. To improve the endurance of the device, the EEPROM design to have modified Fowler-Nordheim tunneling through the whole channel area in Write/Erase operation. As a result, it operates Write/Erase operation at low current, and has been proven Its good endurance. The NAND type flash EEPROM, which has upper limit of V$_{th}$, has the upper limit of V$_{th}$ as 4.5V. It is better than that of floating gate as 4V. And a EEPROM using the SONOSFET without scaling (65$\AA$-l65$\AA$-35$\AA$), was also designed and its characteristics have been compared. It has more possibliity of error from the V$_{th}$ upper limit as 4V, and takes more time for Read operation due to low current. As a consequence, it is proven that scaled down SONOSFET is more pertinent than existing floating gate or SONOSFET without scaling for the NAND type flash EEPROM.EPROM.

  • PDF

Air-Water Test on the Direct ECC Bypass During LBLOCA Reflood Phase with DVI : UPTF Test 21-D Counterpart Test

  • Yun, Byong-Jo;Kwon, Tae-Soon;Song, Chul-Hwa;Euh, Dong-Jin;Park, Jong-Kyun;Cho, Hyoung-Kyu;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.315-326
    • /
    • 2001
  • Direct ECC bypass phenomena that occur in a reactor vessel downcomer with a Direct Vessel Injection (DVI) system during the reflood phase of a Large Break Loss-of-Coolant Accident (LBLOCA) are experimentally investigated using a transparent l/7.5 scaled down test facility of the Upper Plenum Test Facility (UPTF). A series of separate effect tests are peformed in order to investigate the mechanisms of direct ECC bypass and to find out its scaling parameters. Various flow regimes and phasic distribution in downcomer are identified and mapped, and the fraction of direct ECC bypass is measured under a wide range of air and water injection conditions. From the counterpart test of the UPTF Test 21-D, the dimensionless gas velocity ( $j^{*}$$_{g,eff}$) is derived experimentally, which is believed to be a major scaling parameter for the fraction of direct ECC bypass. And it is found out that the direct ECC bypass is greatly affected by the spreading width of ECC water film and the geometric configuration of the downcomer.r.

  • PDF

A Modified FSA Technique Using Full-aperture for SAR Spotlight Mode (SAR 집중조사모드를 위해 전 개구면을 사용하는 수정된 FSA 기법)

  • Jung, Young-Kwang;Ra, Won-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.921-932
    • /
    • 2016
  • In this paper, a modified FSA(Frequency Scaling Algorithm) is proposed for KOMPSAT-5 high-resolution SAR image generation. In order to enhance performance of azimuth compression, degraded in sub-aperture processing due to the imperfect geometric parameter of data acquisition, the full-aperture signal processing algorithm is designed based on the exact time-frequency analysis. In addition, an azimuth scaling function is newly devised to make the full-aperture processing algorithm suitable for KOMPSAT-5 sliding-spotlight mode. Different from the previous sub-aperture FSA schemes, the suggested technique could accommodate the merit of unified signal processing structure regardless of operational modes of KOMPSAT-5. Through the point target simulation, it is verified that the suggested algorithm provides superior performance of azimuth compression over the existing full-aperture processing methods. The experimental results using real data acquired by KOMPSAT-5 are also given to demonstrate the effectiveness of our scheme as well.

CAN MASSIVE GRAVITY EXPLAIN THE MASS DISCREPANCY-ACCELERATION RELATION OF DISK GALAXIES?

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.3
    • /
    • pp.133-140
    • /
    • 2013
  • The empirical mass discrepancy-acceleration (MDA) relation of disk galaxies provides a key test for models of galactic dynamics. In terms of modified laws of gravity and/or inertia, the MDA relation quantifies the transition from Newtonian to modified dynamics at low centripetal accelerations $a_c{\lesssim}10^{-10}ms^{-2}$. As yet, neither dynamical models based on dark matter nor proposed modifications of the laws of gravity/inertia have predicted the functional form of the MDA relation. In this work, I revisit the MDA data and compare them to four different theoretical scaling laws. Three of these scaling laws are entirely empirical; the fourth one - the "simple ${\mu}$" function of Modified Newtonian Dynamics - derives from a toy model of gravity based on massive gravitons (the "graviton picture"). All theoretical MDA relations comprise one free parameter of the dimension of an acceleration, Milgrom's constant aM. I find that the "simple ${\mu}$" function provides a good fit to the data free of notable systematic residuals and provides the best fit among the four scaling laws tested. The best-fit value of Milgrom's constant is $a_M=(1.06{\pm}0.05){\times}10^{-10}ms^{-2}$. Given the successful prediction of the functional form of the MDA relation, plus an overall agreement with the observed kinematics of stellar systems spanning eight orders of magnitude in size and 14 orders of magnitude in mass, I conclude that the "graviton picture" is sufficient (albeit probably not a necessary nor unique approach) to describe galactic dynamics on all scales well beyond the scale of the solar system. This suggests that, at least on galactic scales, gravity behaves as if it was mediated by massive particles.

A Real time Image Resizer with Enhanced Scaling Precision and Self Parameter Calculation (강화된 스케일링 정밀도와 자체 파라미터 계산 기능을 가진 실시간 이미지 크기 조절기)

  • Kim, Kihyun;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.99-102
    • /
    • 2012
  • An image scaler is a IP used in a image processing block of display devices to adjust image size. Proposed image scaler adopts line memories instead of a conventional method using a frame memory. This method reduced hardware resources and enhanced data precision by using shift operations that number is multiplied by $2^m$ and divided again at final stage for scaling. Also image scaler increased efficiency of IP by using serial divider to calculate parameters by itself. Parameters used in image scaling is automatically produced by it. Suggested methods are designed by Verilog HDL and implemented with Xilinx Vertex-4 XC4LX80 and ASIC using TSMC 0.18um process.

  • PDF

Development of Scaled Explosion Logit Model Considering Reliability of Ranking Data (SP 순위 자료별 오차를 고려하는 순위로짓 모형 추정에 관한 연구)

  • Kim, Kang-Soo;Cho, Hye-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.197-206
    • /
    • 2004
  • In ranking data, respondents are required to rank a number of alternatives in order of their preferences and an exploded logit model is generally used. It assumes that each rank contains the same amount of random noise. This study investigates the reliability of ranking data and identifies whether there are different decision rules at each rank stage. The results show that there were differences in the amount of unexplained variation in different ranking stage. A single scaling parameter could not explain the difference of variations of individual coefficients between two ranking data average difference of variations. This paper also investigated the optimal explosion depth in the exploded logit model by using the suggested scaling approach. The scaling approach should be based on particular variables which have different variances rather than based on the whole data set. The empirical analysis show that an explosion depth of 2 is appropriate after scaling the second rank data set, while an explosion including the third rank is inappropriate even though the third rank data set is scaled.